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Abstract

We study plug-in estimators of conditional ex-
pectations and probabilities, and we provide a
systematic analysis of their rates of convergence.
The plug-in approach is particularly useful in
this setting since it introduces a natural link to
VC- and empirical process theory. We make use
of this link to derive rates of convergence that
hold uniformly over large classes of functions
and sets, and under various conditions. For in-
stance, we demonstrate that elementary condi-
tional probabilities are estimated by these plug-in
estimators with a rate of n˛�1=2 if one conditions
with a VC-class of sets and where ˛ 2 Œ0; 1=2/
controls a lower bound on the size of sets we
can estimate given n samples. We gain similar
results for Kolmogorov’s conditional expectation
and probability which generalize the elementary
forms of conditioning. Due to their simplicity,
plug-in estimators can be evaluated in linear time
and there is no up-front cost for inference.

1 Introduction

Conditional distributions and conditional expectations are
of importance in all areas of machine learning and statis-
tics. We consider a simple and natural approach to esti-
mate conditional distributions based on the plug-in prin-
ciple. This allows us to leverage results from VC- and
empirical process theory in order to control estimation er-
rors uniformly over large families of sets and functions.
Before giving a more detailed account of the estimators
and their properties we go through some concrete exam-
ples in which conditional distributions play a major role.
Many applications of conditional distributions make use
of the Markov property, and essentially any method that
uses this property relies on estimates of conditional dis-
tributions. For instance, hidden Markov models use the
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Baum-Welch algorithm to infer conditional distributions
and, more generally, graphical models rely heavily on con-
ditioning (Baum and Petrie, 1966; Rabiner, 1989; Bishop,
2006). Similarly, many reinforcement learning algorithms
are developed for Markov decision processes (MDPs) and
balance between optimization and the estimation of condi-
tional pay-offs (Sutton and Barto, 1998; Szepesvári, 2010).
Recently, causal inference has become increasingly popu-
lar, which is yet another branch of machine learning that
relies heavily on conditioning (Schölkopf, Janzing, Peters,
Sgouritsa, Zhang, and Mooij, 2012).

In the case that conditioning happens only with respect to
finitely many events, elementary tools suffice to prove con-
sistency of estimators and to derive rates of convergence.
However, in practice, the number of events we condition
on is typically very large or even infinite. For example, the
number of states in an MDP is usually exceptionally large
and approximation techniques are used in practice. Neural
networks have proven useful in this context (Silver et al.,
2016). Providing guarantees on estimates of conditional
expectations is, in this case, a non-trivial challenge and falls
within the area of non-parametric statistics. Classical tools
in non-parametric statistics to address such challenges are
VC- and empirical process theory. Before showing how
these tools can be applied in our context we first provide an
overview of the forms of conditioning we can deal with.

In machine learning we encounter conditional distributions
in various forms. For instance, graphical models make use
of conditional probabilities P.AjB/ of an event A given
a second event B . Closely related to this is the condi-
tional probability of a random variable Y attaining a value
y and given that a second random variable X equals x
when both X and Y can attain only finite many values.
Formally, we are working with P.Y D yjX D x/ and
y and x are elements of the finite range spaces of Y and
X respectively, which we will denote in the following by
Y and X. Similarly, E.Y jB/, the average value of the
random variable Y over the set B , plays a role in vari-
ous applications, often in the form of E.Y jX D x/ or
E.f .Y /jX D x/. For example, in classical reinforce-
ment learning we use the conditional expectation operator
E.f .Y /jX D x/ D

Pn
iD1 f .yi /P.Y D yi jX D x/,

where Y D fy1; : : : ; yng, to infer, for instance, the value
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of a policy. One can define conditional expectations also
on continuous spaces if there exist densities p.x; y/ on the
joint space X � Y . In modern probability theory such con-
ditional probabilities and expectations are treated as spe-
cial cases of Kolmogorov’s conditional expectation. Com-
ing from these more elementary forms of conditioning Kol-
mogorov’s approach can appear counter-intuitive at the out-
set. Kolmogorov’s conditional expectation takes a random
variable Y and a set of events grouped in G and returns a
random variable E.Y jG / that is measurable with respect to
the events in G and which equals Y when compared across
any event contained in G . Intuitively, these properties say
that information of the events G allows us to determine the
value E.Y jG / and E.Y jG / corresponds to a suitable av-
erage value of Y . The approach appears sometimes un-
familiar since one often thinks of a conditional expectation
E.Y jX D x/ as a fixed value and not as a random variable.
This difference occurs since for E.Y jX D x/ we already
assume that a particular event occured, i.e. the event that
the random variable X attains value x. If we do not make
this assumption then E.Y jX/ is a random variable that de-
pends on the values that X attains. Furthermore, the move
to a family of events G allows one to consider the average
value of Y across a variety of events and not just for the
event X D x. In Kolmogorov’s approach G is a � -algebra
which guarantees, in particular, that if we can calculate the
average value for X D x1; X D x2; : : : then we can also
calculate the average value for any union of these events,
i.e. we could ask what is the average probability of Y if
X � 1 etc. Kolmogorov’s approach is also used to de-
fine conditional probabilities. The way these are defined
is based on the simple observation that P.A/ D E.�A/,
where �A denotes the characteristic function of the event
A, i.e. �A.x/ attains value 1 if x 2 A and 0 otherwise. In
particular, conditional probabilities P.AjG / are defined as
E.�AjG / and one can regain the more elementary forms
of conditional probabilities by suitable choices of G . Here,
our aim is not to derive estimators for the most general form
of conditioning but to understand how one can control es-
timation errors not only uniformly over a set of elementary
events, but also over combinations of these events. That is,
we control estimation errors for at most countable unions
and intersections, as well as complements, of these elemen-
tary events. Figure 1 provides an overview of the different
forms of conditioning and we fill in missing details about
these in the preliminaries.

The problem of estimating a probability measure P uni-
formly over large classes of sets is well understood when
the empirical measure Pn is used as the estimator. Pn con-
verges uniformly over a family of sets � to the measure P
if � is a VC-class. In fact, in this case one also knows the
rate of convergence; indeed, supA2� jPn.A/ � P.A/j con-
verges to zero at a rate of n�1=2, so that the error decreases
uniformly over � . We make use of this approach to de-
rive plug-in estimators of conditional probabilities P.AjB/

where A 2 �1 and B 2 �2. The plug-in principle suggests
to replace the unknown probability measureP with the em-
pirical measure Pn to gain the estimator Pn.AjB/. Suitable
restrictions on �1 and �2 analogous to the VC-class ap-
proach above allow us to derive n�1=2 rates for this estima-
tor. A difficulty that arises here is that the sets B we con-
dition on can have small probabilities and infB2�2 P.B/

can be zero. We develop a simple technique which de-
creases the rate of convergence but circumvents this prob-
lem and allows us to work with infinite sets �2 for which
infB2�2 P.B/ D 0. A similar approach allows us to de-
rive estimators for conditional expectations E.f jB/ and to
control their estimation error. We need restrictions on the
function class F over which the guarantees should hold.
We extend standard results which say that a rate of n�1=2

uniformly over F can be achieved when estimating ex-
pectations E.f / if F is a VC-subgraph class, or more
generally, a Donsker class (Dudley, 2014). Examples of
such classes are sufficiently constrained neural networks
(Shalev-Shwartz and Ben-David, 2014)[Sec. 20.4], and
unit balls in a reproducing kernel Hilbert space (RKHS,
(Aronszajn, 1950)) if the kernel function is continuous and
the input space is compact. We extend these results to Kol-
mogorov’s conditional expectation and probability.

This extension is straightforward when the involved fam-
ilies are finite, but is non-trivial when they are infinite.
This is because, for instance, the fact that � is a VC-
class does not necessarily imply that the smallest � -algebra
that contains � is a VC-class. In fact, �.� / is a VC-
class if, and only if, it is generated by finitely many sets.
The implication of this is that conditional expectations and
probabilities given a � -algebra G consisting of infinitely
many sets need to be approximated by conditional expec-
tations and probabilities over finite � -algebras Gn where
either

S
n2N Gn D G or one can increasingly well rep-

resent elements in G by elements in Gn. A further diffi-
culty one faces is that it is often easy to construct families
G1 � G2 � : : : such that for each A 2 G there exists an
n and a B 2 Gn which approximates A well in the sense
that P.A�B/ < �. However, this convergence is typi-
cally not uniform. In natural settings one has, for instance,
supA2G infB2Gn P.A�B/ D 1=2 despite this approxima-
tion property of the families Gn; see Section 2.3 for de-
tails. The problematic sets get increasingly irregular as n
increases and one way to resolve this problem is to work
with functions f that posses certain smoothness proper-
ties, such as Lipschitz-continuity. This allows for efficient
estimation of conditional expectations in the sense that one
attains inequalities of the type

kE.f jG / �E.f jGn/kˇ1.P / � Ldn;

where f is an L-Lipschitz function and dn is some mea-
sure of size of the elements in Gn which decreases to
0 in n. Such inequalities can then be combined with
guarantees for estimators of E.f jGn/ to gain bounds on
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E.Y jG /

P.AjG /

P.AjB/Px.B/

E.Y jB/

E.f .Y /jX D x/

Figure 1: An overview of various forms of conditioning and their interrelation.

kE.f jG / � En.f jGn/kˇ1.P / where we use En. � jGn/ to
denote the estimator of the conditional expectation. We ex-
plore this line of thought in Section 3.2. In particular, we
use this approach to derive plug-in estimators for E.f jG /
and P.AjG /, and we control their estimation error over in-
finite families of events G and simultaneously over large
function classes F . In general, we focus on rates of conver-
gence and we do not study finite sample guarantees. That
being said, finite sample guarantees are amenable to the ap-
proach, e.g. by using data-driven Rademacher complexities
as can be found in Giné and Nickl (2016)[Sec 3.5].

Comparison. There exists a variety of approaches to es-
timate conditional distributions and expectations. Of par-
ticular importance are the following two. 1. In the ele-
mentary setting whereX and Y attain only finite many val-
ues and one has observations .X1; Y1/; : : : ; .Xn; Yn/ it is
common to estimate E.Y jX D x/ by

Pn
iD1 Yi � �fXi D

xg=]fi W Xi D xg, whereX1; : : : ; Xn are i.i.d. according to
P . From the central limit theorem it follows that these es-
timators converge with a rate of n�1=2. Our estimators are
the natural generalization of such estimators to not neces-
sarily finite valued random variables. 2. Estimators of con-
ditional expectations of the form E.f jX D x/ are popular
in the kernel literature and have been pioneered by Song
et al. (2009). f lies here in an RKHS and E.f jX D x/

is approximated through a function g in a second RKHS.
It is known that under favorable conditions the kernel es-
timator converges with a rate of log.n/=n to an approxi-
mation of E.f jX D x/ – this corresponds to a rate of
log1=2.n/n�1=2 in our setting. An important condition is
here that f is an element of the unit ball of a finite dimen-
sional RKHS (Grünewälder et al., 2012). This approach is
somewhat different from ours in that it controls the com-
plexity of the conditional expectation estimator by repre-
senting it through an RKHS function that is constraint in
its norm. Our techniques do not extend straightforwardly
to this approach and we cannot use them to derive rates
of convergence for the approximation. On the other hand,
our approach does not rely on a particular function space
like an RKHS or on assumptions on the dimension of the
involved function spaces.

Contribution. Our main contributions are summarized
below:

1. To the best of our knowledge plug-in estimators for
conditional expectations and probabilities have not
been systematically studied before. This comment ap-
plies, in particular, to the estimators we introduce in
Equations (2,3) and (5-7).

2. Similarly, works that exploit VC-theory to study such
conditional expectations and probabilities are lacking.
The plug-in principle allows for a very efficient use of
VC-theory and demonstrating this relation is, in our
opinion, a significant contribution of our paper.

3. We use VC-theory to establish rates of convergence
for the plug-in estimators, i.e. Prop. 3.1 to Prop. 3.4
provide rates of convergence for the estimators under
various conditions and these propositions are novel.

4. Another contribution worth pointing out is the study
of the interplay between � -algebras and VC-classes.
This is crucial for an understanding of rates of conver-
gence of the plug-in estimators.

1.1 Preliminaries

We start by adding details about how conditional expec-
tations and probabilities are defined (see (Dudley, 2002)
for more details). To define Kolmogorov’s conditional ex-
pectation formally consider a probability space .�;A; P /
and a � -subalgebra G � A. A conditional expecta-
tion E.Y jG / is a random variable that is G -measurable
and which agrees with Y over any element B 2 G , i.e.R
B
E.Y jG / dP D

R
B
Y dP , for all B 2 G : E.Y jG / is a

random variable and is guaranteed to exist if EjY j is fi-
nite. Recall that conditional probabilities are defined by
P.AjG / WD E.�AjG /. Specific choices of G yield the ele-
mentary conditional probabilities. For instance, with G D

f;; �;B;�nBg, P.AjG /.!/ D P.AjB/ for any ! 2 B , if
P.B/ > 0. Conditioning with respect to a random variable
X is achieved by letting G D fX�1ŒB� W B 2 Bg DW �.X/

where B is the Borel-algebra on R. In this case we also
use P.AjX/ WD P.AjG / and E.Y jX/ WD E.Y jG /. A
caveat is that E.Y jX/ is a random variable that acts on the
probability space � which might be X � Y or some ab-
stract probability space. Ideally, one wants a conditional
expectation or a distribution that acts on Y , e.g. if Y at-
tains values in R then the conditional distribution should be
a distribution on R. For simplicity let Y D R and let B
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be the Borel-algebra. If there exists PY jG .B; !/ such that
PY jG .B; !/ WD P.Y �1ŒB�jG / almost surely, PY jG .B; !/
is a probability measure on the space .R;B/ for almost all
! and PY jG .B; �/ is G -measurable then we call PY jG a con-
ditional distribution. We also use the notation Px in the
product space case if for each x 2 X, Px is a probabil-
ity measure on the Borel sets BY of Y , x 7! Px.B/ is
BX-measurable and P.A � B/ D

R
B
Px.A/d�.x/ for all

A 2 BY ; B 2 BX. � D PX�1 is the marginal mea-
sure on X. The conditional expectation with respect to
f W Y ! R can then be written as E.f .Y /jX 2 B/ DR
B

R
f .y/Px.y/ d�.x/. We will also use E.f jX 2 B/ to

denote such estimators if it is obvious from the context that
f is a function of Y only.

Empirical Processes. In this paper we assume that we
have given a sequence S1; S2; : : : of i.i.d. random variables
attaining values in some sample space S � Rd , where we
equip S with the Borel-algebra BS. In the simplest case we
are interested in estimating the probability law P of these
random variables. One way to estimate P is to use the em-
pirical measure Pn D n�1

Pn
iD1 ıSi , where ıSi denotes

the measure that has point mass at Si . The empirical mea-
sure Pn is a random probability measure on BS. One can
also view Pn as a stochastic process indexed by the sets in
BS, i.e. a stochastic process that mapsA 7! PnA;A 2 BS.
The empirical process �n WD n1=2.Pn � P / is a cen-
tered and normalized version of this stochastic process.
The empirical process can be indexed by subsets of BS

or by sets of functions, where we use then the notation
Pf WD

R
f dP . To avoid some technical difficulties it

is useful to assume that the underlying probability space
on which the Si live is the product .S;BS; P /

NC and to
identify the Si with the projections onto the i ’th coordi-
nate (Dudley, 2014)[Ex. on p. 234]. Furthermore, the
process �n is in general not measurable and one needs to
use outer probabilities when studying its convergence be-
havior (Dudley, 2014)[Chp. 3]. For us these technicali-
ties play only a minor role, i.e. we will have to consider
rates of convergence in O�P instead of the more familiar
OP -notation. A sequence of random variables Y1; Y2; : : :
lies in O�P .an/ for a sequence of positive real numbers
a1; a2; : : : if, and only if, for every � > 0 there exists an
M > 0 and N 2 N such that Pr�.jYn=anj > M/ � �

for all n � N . Pr� denotes an outer measure. The most
important result for us is that if a class of functions is a
Donsker class then kPn � P kF 2 O�P .n

�1=2/, where we
use here the supremums norm k�nkF D supf 2F j�n.f /j.
This follows from the definition of Donsker classes (Dud-
ley, 2014)[p. 137], Remark 3.7.27 in (Giné and Nickl,
2016) and the Portmanteau theorem (Dudley, 2014)[Thm.
3.27]. The result extends to families of sets � by con-
sidering C WD f�A W A 2 �g, i.e. if C is a Donsker
class then kPn � P k� 2 O�P .n

�1=2/, where k�nk� D
supA2� j�n.C /j.

2 Families of Sets and Functions

We collect in this section results about families of sets and
functions that allow us to control estimation errors uni-
formly. VC-theory is one of the main tools to derive uni-
form rates of convergence. In particular, C D f�C W C 2

�g with � being a VC-class, and VC-subclasses of func-
tions are Donsker classes if a measurability assumption is
fulfilled (Dudley, 2014)[p. 258] and one attains a rate of
convergence of n�1=2 uniformly over any Donsker-class.
Note that we will use the notation C throughout for the
characteristic functions of sets in � . Our running example
in this paper is the following set

fA W A D Œx; xC h1� � X; x 2 X; h 2 Œ0;1Œg [ f;g; (1)

where we consider both X D Rd and X D Œ0; 1�d . The
family of sets � defined in eq. 1 is the family of hyper-
cubes, h is the length of the sides of the hypercube and x
specifies its location. Such families of sets are natural when
trying to estimate a probability measure P and resembles
the density estimation approach where a kernel is used to
average the values of the density of P . This family of sets
has finite VC-dimension and one can estimate P uniformly
over � with a rate of n�1=2.

Lemma 2.1 (Proof on p.10). C is a universal Donsker
class if X is Rd or Œ0; 1�d .

The term universal refers here to the property that C is
a Donsker class for any probability measure P , i.e. P

does not need to posses any particular property like having
a density function. Variations of this family can be con-
sidered, however, the family cannot be chosen much large
since, for example, the family of all convex closed subsets
of a bounded open set in Rd ; d � 3, is not a universal
Donsker class (Dudley, 2014)[Thm 11.3].

2.1 Products and Intersections

Intersections between sets and products between functions
and characteristic functions of sets play a major role for
conditioning. In particular, for elementary conditional
probabilities P.AjB/ D P.A \ B/=P.B/, A 2 �1; B 2

�2, it is beneficial if the chracteristic functions of the sets
in �1 u �2 WD fA \ B W A 2 �1; B 2 �2g form a
Donsker class. Similarly, for the general conditional prob-
ability P.AjG /, A 2 � , we gain fast rates of convergence
if the characteristic functions of sets in �uG are a Donsker
class. Closely related is the importance of the product for
conditional expectations E.f jG /; f 2 F . We gain fast
rates if F � f�A W A 2 G g is a Donsker class. VC the-
ory is here useful: if �1 and �2 are VC-classes then so is
�1 u �2 Dudley (2014)[Thm 4.34]. Similarly, the product
�1��2 D fA�B W A 2 �1; B 2 �2g is a VC-class if both
�1 and �2 are. This implies that F � C is a VC-subgraph
class if F is a VC-subgraph class and � is a VC-class.
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2.2 Growing Families

Donsker classes are restricted in complexity and size. It
is often useful to increase the size of the involved function
class or family of sets with the number of samples at the
cost of a slower rate of convergence. One way to achieve
this is to use nested function classes F1 � F2 � : : : : In
particular, if F1 is a Donsker class such that cF1 � F1
for all c 2 Œ0; 1� and �1 � �2 � : : : is a non-decreasing
sequence in Œ0;1/ then by letting Fn WD fcf W 0 � c �

�n; f 2 F1gwe gain a sequence of nested function classes.
The rate of convergence is then slowed down to �nn�1=2,
but the guarantees are uniform over Fn. A typical case
is where F1 is a unit ball in some function space and we
increase the ball size with n to exhaust the function space
successively. This approach is closely related to Vapnick’s
structural risk minimization (SRM).

Nested families of sets �1 � �2 : : : : can also be used.
Standard bounds for VC-classes (Devroye et al., 1996)[chp.
12] show that for VC-classes f�ngn�1 with VC-dimension
vn one has for any n � 1 that

Pr�
�

sup
A2�n

p
njPn.A/ � P.A/jp

8 log.16=ı/C 8vn log.n/
� 1

�
is upper bounded by ı. The argument allows us to derive
a rate of up to

p
log.n/n�1=2 which is a

p
log.n/ factor

slower than the correct rate if one uses, for instance, a sin-
gle VC-class � D �1 D �2 D : : :. Beside this minor re-
duction in rate the observation allows for a useful control of
nested VC-classes. Given some ı > 0; q 2 .0; 1/, we can
choose the classes �n, for example, with VC-dimension
vn D nq and with outer probability of at least 1 � ı we
have for any n � 1 that

sup
A2�n

p
njPn.A/ � P.A/jp

8 log.16=ı/C 8nq log.n/
� 1:

Particularly, this implies that kPn � P k�n lies in the order
class O�P .

p
log.n/n.q�1/=2/.

2.3 Extension to �.� /

If � is a VC-class then we can estimate P.A/ well uni-
formly over � . This does not guarantee us, however, that
we estimate P.

S
n�1An/ or P.

T
n�1An/ well for arbi-

trary sequences fAngn�1 in � and it prevents us from ap-
proximating and estimating probabilities of more compli-
cated sets. Furthermore, it introduces difficulties when try-
ing to estimate general conditional probabilities P.AjG /
and expectations E.AjG /. The smallest family of sets
which is closed under countable unions, intersections and
complements and which contains � is �.� /, the smallest
� -algebra that contains � . There are a few ways by which
one can extend guarantees to �.� / from � . In interesting

cases the rate of convergence of Pn to P is, however, sig-
nificantly slower when measured over all of �.� /. This dif-
ficulty is already indicated by the VC-dimension: the VC-
dimension increases significantly when one moves from �

to �.� /. For example, a partition of Œ0; 1� consisting of
n intervals of equal length has VC-dimension one whilst
the smallest � -algebra that contains this partition has VC-
dimension n. A simple way to extend the guarantees that
hold uniformly over � to �.� / makes use of some weak
assumption about the probability measure P and the size
of the sets in � . This approach is based on the following
lemma.
Lemma 2.2 (Proof on p. 11). Let .�;A; P / be a prob-
ability space and � � A a disjoint family of sets such
that for each A 2 � there exists fAngn2N in � with
�nA D

S
n2NAn and ; 2 � . If for some measure Q

there exists a constant c > 0 such that for all A 2 � we
have jQ.A/ � P.A/j � cP.A/ then supA2�.�/ jQ.A/ �
P.A/j=P.A/ � c.

We can make use of this lemma by letting Q be the
empirical measure Pn. Now, if we impose a density
assumption, say the density of P is lower bounded by
b > 0, and if we assume the sets A to have at least
a volume of d then jPn.A/ � P.A/j � c implies that
jPn.A/�P.A/j � P.A/c=.bd/ and the lemma tells us that
supA2�.�/ jPn.A/ � P.A/j � c=.bd/. So the guarantees
that we have for elements in � transfer to guarantees for
elements in �.� / by scaling the upper bound by 1=.bd/.

When � is of infinite cardinality then we face a further dif-
ficulty since �.� / cannot be a VC-class in this case, even
if � is a VC-class. This is a consequence of the following
lemma.
Lemma 2.3 (Proof on p. 10). Let X be any set and G be a
� -algebra of subsets of X. G is a VC-class if, and only if,
G is a finite family of sets.

This means that we need to approximate large � -algebras G

in a suitable way, for instance, through a sequence of finite
� -subalgebras G1 � G2 � : : : of G such that any element
in G can eventually be approximated by elements in some
Gn. In particular, for each A 2 G and � > 0 we want to
have an element B 2

S
n Gn such that P.A�B/ < �.

We demonstrate this approach on a simple example. We
use in this example the Borel-algebra on the d -dimensional
hypercube. We approximate this large � -algebra with fam-
ilies �n D f;g [ fŒx; x C 2�n1/ W xi 2 f0; 2�n; : : : ; 1 �
2�ng; i � dg with union � D

S
n�1 �n. � is a VC-

class, however, �.� / is not. Also observe that the VC -
dimension of �n is 1 and of �.�n/ is 2dn. This family of
sets is well studied, for instance in the context of classifi-
cation (Devroye et al., 1996; Scott and Nowak, 2006). It
is well known that � is large enough to approximate any
Borel set in the above sense arbitrary well. We can now
either use the SRM like approach discussed in Section 2.2
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B1 B2 B3 B4

Figure 2: The figure shows a dyadic partition of the unit
interval consisting of the set B1; : : : ; B4. The shaded area
is a measurable set A which cannot be approximated well
by this dyadic partition, i.e. if B is any union of the sets
B1; : : : ; B4 then P.A�B/D 1=2.

or use Lemma 2.2 together with the observation that � is
a VC-class. The former approach tells us that if given n-
samples we use the class �.��n/, where f�ngn�1 is a non-
decreasing sequence, then the rate of convergence is not
slower than

p
log.n/2d�n=2n�1=2 without any assumption

on P . Alternatively, imposing an assumption on the den-
sity, using Lemma 2.2 together with the fact that � is a VC-
class, we gain a rate of convergence that is upper bounded
by 2d�nn�1=2, i.e. a rate of convergence that is inferior by
a factor 2 in the exponent to the SRM like approach. We
summarize this result in the following corollary. A simple
proof of the approximation property of the families �.�n/
is contained in the appendix for the reader’s convenience.

Corollary 2.1 (Proof on p. 11). Let .Œ0; 1�d ;A; P / be
a probability space such that P has a density p that
is lower bounded by b > 0. Let f�ngn�1 be a non-
decreasing sequence in NC such that limn!1 �n D 1

then k�n.A/k�.��n / 2 O�P .
p

log.n/2d�n=2/. Further-
more, for any Borel set A and � > 0 there exists an n 2 N
and B 2 �.��n/ such that P.A�B/ � �.

We can increase �n only logarithmically since we have an
exponential increase in the number of intervals, e.g. �n �
1=.2d/ logn results in a rate of convergence of n�1=4.

We did not quantify the approximation error. This is, in
fact, not straight forward: consider the case where d D
1 for simplicity and observe that for any n there exists a
Borel set An such that infB2�.�n/ P.An�B/ D 1=2 (An
can actually be chosen as an element of �.�nC1/). Figure 2
visualizes such a setAn. Let us consider now one particular
n0 2 N and the corresponding set An0 . This particular set
has the property that infB2�.�n/ P.An0�B/ D 1=2 for all
n � n0 and infB2�.�n/ P.An0�B/ D 0 for all n > n0.

There exists another interesting approach to curtail the in-
crease in model complexity when passing from � to �.� /
which uses the symmetric convex hull of a VC-class. Let
� be a VC-class then C is a VC-subgraph class and the
symmetric convex hull of C , which we will denote with
sco C D f

P
i�n ˛i�Ai W Ai 2 � ;

P
i�n j˛i j � 1; n 2 Ng,

is a Donsker class if certain measurability assumptions are
fulfilled (Giné and Nickl, 2016)[Thm.3.7.34]. The sym-
metric convex hull of a VC class can be used in the follow-
ing way: for finite many disjoint elements A1; : : : ; An 2 �

the function m�1�.
S
i�mAi / D m�1

P
i�m �Ai 2 sco C

andm�1�.
S
i�mAi / can be estimated with a rate of n�1=2

if � is a VC-class. In fact, the Ai do not even need to be
disjoint for this to hold. Using the nested function class
approach we can work with �nsco C , where �n is a non-
decreasing sequence. This approach results in a rate of
convergence of �nn�1=2 and we can estimate unions of ar-
bitrary m elements in � for any m � �n. Intuitively this
approach is based on how difficult it is to represent the ele-
ments we want to estimate. Sets that can be represented by
the union of few sets of � can be estimated well while sets
that need large numbers of such sets to be represented have
weak guarantees. Due to space constraints we will focus in
the following only on the earlier discussed approach which
uses growing families of � -algebras.

3 Conditioning

We introduce estimators for conditional expectations and
probabilities and we provide rates of convergence for these.
We start with elementary forms of conditioning and define
corresponding plug-in estimators. We then extend these to
gain estimators of Kolmogorov’s conditional expectation
and probabilities, and we provide estimators of conditional
expectations given a random variable X .

3.1 Elementary

The simplest form of a conditional expectation is the aver-
age of a random variable Y W S ! R over a measurable
set B 2 BS which has positive measure P.B/ > 0, that is
E .Y jB/ D

R
B
Y dP

ı
P.B/; where Y 2 ˇ1.P /. Given

i.i.d. samples S1; : : : ; Sn the plug-in estimate of this con-
ditional expectation is

En .Y jB/ WD

�Z
B

Y dPn

��
Pn.B/; (2)

with Pn.B/ D
1

n

nX
iD1

ıSi .B/;

and
Z
B

Y dPn D
1

n

nX
iD1

Y.Si / � ıSi .B/

if Pn.B/ > 0 and En .Y jB/ WD 0 otherwise. Simi-
larly, Pn.AjB/ WD Pn.A \ B/=Pn.B/ if Pn.B/ > 0

and Pn.BjA/ D 0 otherwise is the plug-in estimator for
the elementary conditional probability. To emphasize that
Y can be any measurable function acting on S we re-
place in the following Y by f W S ! R. The plug-
in estimators converge uniformly over Donsker classes to
E.f jB/ and P.AjB/ under various assumptions on the
sets B we condition with. In particular, with the notation
F� WD ff � �C W f 2 F ; C 2 �g, we have the following
first result.
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Proposition 3.1 (Proof on p. 12). If � � BS is a finite set
with infB2� P.B/ > 0, F is a subset of ˇ1.P / uniformly
bounded in supremums norm and F� is a P�Donsker
class then

sup
f 2F

sup
B2�

jEn .f jB/ �E .f jB/j D O
�
P .n

�1=2/:

Furthermore, if � 0 � BS, is such that C 0
�

is a P -Donsker
class then

sup
A2� 0

sup
B2�

jPn.AjB/ � P.AjB/j D O
�
P .n

�1=2/:

Here, F can be the unit ball of an RKHS with continuous
kernel acting on a compact set or a neural-network, suitably
restricted in its complexity and � 0 can be any VC-class (up
to measurability assumptions). The restriction that � is fi-
nite can be weakened if we are willing to accept a slower
rate of convergence. The following holds if the measure P
has a density wrt. Lebesgue measure �.

Proposition 3.2 (Proof on p. 13). If � � BS, C and F�

are P -Donsker classes, F is a subset of ˇ1.P / uniformly
bounded in supremums norm and P has a density which is
lower bounded by a constant b > 0 then with �n WD fC W

C 2 � ; �.C / � n�˛g and ˛ 2 Œ0; 1=2/

sup
f 2F

sup
B2�n

jEn .f jB/ �E .f jB/j 2 O
�
P .n

˛�1=2/:

Furthermore, if � 0 � BS is such that C 0
�

is a P -Donsker
class then

sup
A2� 0

sup
B2�n

jPn.AjB/ � P.AjB/j 2 O
�
P .n

˛�1=2/:

If � is the set of cubes in Œ0; 1�d then �.C/ D hd for
a cube C with edge length h. Hence, given n samples we
can evaluate conditional expectations and probabilities over
cubes with h � n�˛=d .

3.2 Kolmogorov’s Conditional Expectation and
Probability

The previous results generalize straightforwardly to � -
algebras �.� / if � is finite, because �.� / has then finite
VC-dimension. Such results are of interest if one wants
to be able to combine events in � in various ways. For
example, in a graphical model we have a set of events
A1; : : : ; An and we aim to infer dependencies between the
Ai but also between combinations like A1\A2\A3. This
approach can also be used to control estimation errors of
Kolmogorov’s conditional expectation and probability. Let
G be a � -algebra consisting of finite many sets then there
exists a unique finite partition PG � G of S such that
each B 2 G can be written as a finite union of elements

of the partition and the � -algebra generated by the parti-
tion equals G (see Lemma B.1 in the Supplementary Ma-
terial). Using this partition we define estimators En.f jG /
and Pn.AjG / by

En.f jG / WD
X
B2PG

En.f jB/ � �B and (3)

Pn.AjG / WD
X
B2PG

Pn.AjB/ � �B:

An important property of conditional expectationsE.f jG /
is that they are G -measurable. Observe that the estima-
tors En.f jG / and Pn.AjG / have the same property, i.e.
they are also G -measurable. The following result shows
that these estimators are sensible and estimate E.f jG / and
P.AjG / uniformly with a rate of n�1=2 if G consists of fi-
nite many elements only.
Proposition 3.3 (Proof on p. 14). If G � BS is a � -
algebra consisting of finite many sets, F is a subset of
ˇ1.P / uniformly bounded in supremums norm, FG is a
P�Donsker class then

sup
f 2F

kEn .f jG / �E .f jG / kˇ1.P / 2 O
�
P .n

�1=2/:

Furthermore, if � � BS, is such that CG is a P -Donsker
class then

sup
A2�

kPn .A jG / � P .A jG //kˇ1.P / 2 O
�
P .n

�1=2/:

Using Proposition 3.2 these results can be extended to in-
finite collections of sets. We demonstrate this on the se-
quence f�ngn�1 introduced in Section 2.3. We used there
a non-decreasing sequence f�ngn�1 to balance the rate of
convergence against the size of the family of sets we con-
dition with. We use in the following the notation G�n WD

�.��n/ and we assume that the function class F fulfills

sup
f 2F

sup
B2G�n

j�n.f � �B/j 2 O
�
P .
p

logn2d�n=2/: (4)

Recall that �n denotes the empirical process. This assump-
tion is effectively saying that Corollary 2.1 also holds for
F � f�C W C 2 G�ng. This assumption can be verified for
concrete function classes in a similar way as in Cor. 2.1.
Proposition 3.4 (Proof on p. 14). Let .Œ0; 1�d ;B; P / be a
probability space such that P has a density p that is lower
bounded by b > 0 and let f�ngn�1 be a non-decreasing
sequence in NC such that

�n 2 o

�
1

3d log.2/
log
� np

log.n/

��
:

If F is a subset of ˇ1.P / uniformly bounded in supremums
norm which fulfills Equation 4, then

sup
f 2F

kEn
�
f
ˇ̌
G�n

�
�E

�
f
ˇ̌
G�n

�
k1

2 O�P .
p

log.n/2.3=2/d�nn�1=2/:
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Furthermore, if � � BS, is such that C fulfills Equation 4

sup
A2�

kPn
�
A
ˇ̌
G�n

�
� P

�
A
ˇ̌
G�n

�
k1

2 O�P .
p

log.n/2.3=2/d�nn�1=2/:

Like in Corollary 2.1 �n can increase only logarithmically
since the � -algebras grow exponentially in size. Also ob-
serve that we kept F fixed. We could let this family grow
with n at a further expense of the rate of convergence.

The last proposition gives us only bounds for the differ-
ence between En.f jG�n/ and E.f jG�n/. We would obvi-
ously prefer to replace the latter term with E.f jG /, where
G D �.

S
n Gn/ is in this example the Borel-algebra. This

brings us back to the discussion centered around Figure
2 and the difficulties of approximating arbitrary sets in
G . This problem can be alleviated if the functions in F

are Lipschitz continuous with common constant L. We
demonstrate this for d D 1: observe that Gn � G for all
n, and that the conditional expectation can be written as

E.f jGn/ D

2nX
iD1

1

P.Ii /

Z
Ii

f dP � �Ii ;

where Ii D Œai ; bi / denotes the i ’th Dyadic interval of
length 2�n. Now, using these observations and Jensen’s
inequality for conditional expectations gives us

kE.f jG / �E.f jGn/kˇ1.P /

� kf �E.f jGn/kˇ1.P /

D
P2n

iD1

R bi
ai
jf �

R bi
ai
fdP=P.Ii /jdP

� 2�nL
P2n

iD1 P.Ii / D 2
�nL:

Therefore the approximation error between E.f jG / and
E.f jG�n/ decreases as 1=n if we allow for a logarith-
mic increase of �n and the dominant term in the bound
on supf 2F kEn.f jG�n/�E.f jG /kˇ1.P / is the error term
bounded in Proposition 3.4.

3.3 Conditioning with respect to a Random Variable

As discussed in the preliminaries there are multiple ways
to condition a random variable Y by a second random
variable X . Here, we are discussing plug-in estima-
tors for the case where the sample space S WD X � Y
and X and Y are the projections onto the components,
i.e. X.x; y/ D x and Y.x; y/ D y. First, we pro-
vide an estimator for the conditional probability measure
PY jG .A; !/ WD P.Y �1ŒA�jG /.!/, A 2 BY , ! 2 S and
G D �.X/. The plug-in estimator based on i.i.d. random
variables S1; : : : Sn attaining values in S, using the partition
PX � �.X/ implied by Lemma B.1 and assuming that X
attains only finite many values, is

P nY jG .A; !/ WD
X
B2PX

Pn.X � AjB/ � �B.!/ (5)

where we moved n, which indicates that we are dealing
with an estimator, into the superscript on the left side. The
rate of convergence of this estimator can be studied in the
same way as in the previous section.

Conditional expectations of the form E.f jX 2 B/ WDR
B

R
f .y/Px.y/d�.x/, f W Y ! R, can also be estimated

if we use sets B 2 BX that have non-zero measure. The
plug-in estimator is

En.f jX 2 B/ D

nX
iD1

f .Yi / � ıXi .B/
.
Pn.B/; (6)

if Pn.B/ > 0 and En.f jX 2 B/ D 0 otherwise. This
resembles the estimator in eq. (2). Generalizing this to
finite � -subalgebras S of �.X/ we gain

En.f jS/ D
X
B2PS

En.f jX 2 B/ � �B: (7)

Observe, that it is in general not possible to evaluate
En.f jX D x/ directly since the set B D fX D xg has
probability 0 if X is not a discrete random variable. How-
ever, it is possible to shrink the sets B with increasing sam-
ple size. For instance, we can use the hypercubes defined
in Equation 1 together with Proposition 3.2 to successively
refine the estimate with respect to X and to approximate
the sets fX D xg well for large n. Similarly, we can use
non-decreasing families of � -subalgebras S1 � S2 � : : :

to reproduce the result of Proposition 3.4 in the context of
conditioning with respect to random variables.

4 Discussion

This paper presents a plug-in approach to the estimation
of conditional expectations and probabilities and demon-
strates how one can derive rates of convergence for these
estimators in various settings. While we focused here only
on rates it would be useful to complement these with finite
sample guarantees, potentially in the form of data depen-
dent Rademacher-complexities. Another open problem is
the extension of our techniques to the case where the condi-
tional expectation is approximated by a function as in Song
et al. (2009); Grünewälder et al. (2012). Furthermore, it
would be interesting to see how these estimators perform
in real-world problems. The application of conditional ex-
pectations and probabilities to real-world problems is not
always straight forward since one often has no i.i.d. data
available but samples from a dependent process (e.g. in
reinforcement learning).
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Supplementary material of the paper

Plug-in Estimators for Conditional Expectations and Probabilities

A Families of Sets and Functions

Lemma A.1 (Proof of Proposition 2.1). C is a universal Donsker class if X is Rd or Œ0; 1�d .

Proof. We apply Corollary 6.20 of Dudley (2014).

(i) The set � has finite VC dimension bounded by 2d + 1. PP Consider arbitrary 2d + 1 points x1; x2; : : : 2 X. Now,
there is at least one element xi which attains the maximum in dimension j , 1 � j � d , i.e. xij D maxl�d xlj . Select
for every dimension such an element and, in the same way, select d minimizers. Denote the joint set of these points with
B . Then every element from � that contains B also contains x1; : : : ; x2dC1 and there is no set A 2 � which fulfills
A \ fxi W 1 � i � 2d C 1g D B . QQQQ

(ii) The set X is a Borel set. Hence �X 2 ˇ2.X; P / for every probability measure P on the Borel sets and �X is an
envelope function of C .

(iii) C is image admissible Suslin. PP Let Y D X� Œ0;1Œ equipped with the natural topology, which is the one induced by
the Euclidean metric, and the corresponding Borel � -algebra. Y is a Polish space since it is a closed subset of the complete
space RdC1.

Consider now the map T .y; h/ D �.Œy; y C h1�/ if Œy; y C h1� 2 � and �.;/ otherwise. T maps Y onto C . We need to
verify that .y; h; x/ 7! .T .y; h//.x/ is jointly measurable, that is for any Borel subset A of R

B D f.y; h; x/ W x; y 2 X; h 2 Œ0;1Œ; .T .y; h//.x/ 2 Ag

must be in the product � -algebra. T .y; h/.x/ attains either the value 0 or 1 hence there are four events we need to consider.
First A D ; which implies B D ; and f0; 1g � A which implies B D Y are always in the � -algebra.

So consider now a set A such that 1 2 A but not 0, then

B D f.y; h; x/ W x; y 2 X; h 2 Œ0;1Œ; �.Œy; yC h1�/.x/ D 1g
D f.y; h; x/ W x; y 2 X; h 2 Œ0;1Œ; x 2 Œy; yC h1�g:

This set is closed in the natural topology of X � Œ0;1Œ�X since, if .y; h; x/ is not in B then with � < d.x; Œy; y C h1�/,
where d is the Euclidean metric, we have that the open ball

f.u; �; �/ W d.y; u/; d.h; �/; d.x; �/ < �=3; u; � 2 X; � 2 Œ0;1Œg � Y �XnB

contains .y; h; x/. And, since,

.Y �X/nB D f.y; h; x/ W x; y 2 X; h 2 Œ0;1Œ; .T .y; h//.x/ D 0g

the latter set is open. Hence, both sets are in the Borel algebra B.Y �X/.

It remains to show that the product algebra equals the Borel algebra, that is,

B.Y /˝B.X/ D B.Y �X/:

This follows from Fremlin (2003)[4A3D(ci)] if Y � X is a hereditary Lindelöf space. Though, every second countable
space like Y �X is hereditary Lindelöf and the result follows. QQQQ

Lemma A.2 (Proof of Lemma 2.3). Let X be any set and G be a � -algebra of subsets of X. G is a VC-class if, and only
if, G is a finite family of sets.

Proof. Any finite collection of sets is a VC-class. For the other direction assume G is infinite.

(i) There exists a countably infinite sequence of disjoint sets in G . PP We prove by induction that for any n 2 N there
exist n disjoint sets in G . The induction hypothesis is trivially fulfilled for n D 1. For the induction step let us assume that
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A1; : : : ; An 2 G are not empty and mutually disjoint. There exists an elementB 2 G that is not contained in �.A1; : : : ; An/
since otherwise G D �.A1; : : : ; An/ and G would be finite. Take such an element B . If Bn

S
i�nAn 2 G is not empty

then add this to the sequence as AnC1. AnC1 is then obviously disjoint from all A1; : : : ; An. If Bn
S
i�nAn D ; then

B ¨
S
i�nAn. Furthermore, there is some i � n such that AinB 6D ; 6D Ai \ B , because otherwise B would be a union

of a subset of A1; : : : ; An. Now, remove Ai from the sequence and add AinB and Ai \ B to the sequence. This way we
gain nC1 disjoint elements that are all contained in G . This implies now directly that there is a countably infinite sequence
of disjoint sets contained in G . QQQQ

(ii) By .i/ we can choose a sequence fAngn2N of disjoint and non-empty subsets of G . By countable choice we can
select a sequence fxngn2N such that xn 2 An. Consider any k 2 N, points x1; : : : ; xk and any subset of these, say
fxni W i � l; 0 � n1 < n2 : : : < nl � kg for l � k and consider the corresponding sequence of sets fAni W i � lg then
fxni W i � lg D fxngn�k \

S
fAni W i � lg and the set fxigi�k is shattered. Since this argument applies to any k 2 N we

know that G is not a VC-class.

Lemma A.3 (Proof of Lemma 5). Let .�;A; P / be a probability space and � � A a disjoint family of sets such that for
each A 2 � there exists fAngn2N in � with �nA D

S
n2NAn and ; 2 � . If for some measure Q there exists a constant

c > 0 such that for all A 2 � we have jQ.A/ � P.A/j � cP.A/ then supA2�.�/ jQ.A/ � P.A/j=P.A/ � c.

Proof. We apply the monotone class theorem. A;B 2 � then either A \ B D ; 2 � or A D B 2 � . Define

D WD fA W A D
[

E;E � � a countable family; jQ.A/ � P.A/j � cP.A/g:

D is a Dynkin class: (1) ; 2 D ; (2) A 2 D then by assumption�nA D
S
n2NAn for some elements An 2 � and because

the An are disjoint we have

jQ.�nA/ � P.�nA/j �
X
n2N

jQ.An/ � P.An/j � c
X
n2N

P.An/ D cP.�nA/

and �nA 2 D . (3) If fAngn2N is a disjoint sequence in D , thenˇ̌̌
Q
�[
n2N

An

�
� P

�[
n2N

An

�ˇ̌̌
�

X
n2N

jQ.An/ � P.An/j � cP
�[
n2N

An

�
:

Since each An is a countable family of elements on � we know that
S
n2NAn is also a countable family of elements of �

and therefore
S
n2NAn 2 D . The result follows now from the monotone class theorem since � � D .

Corollary A.1 (Proof of Proposition 2.1). Let .Œ0; 1�d ;A; P / be a probability space such that P has a density p that
is lower bounded by b > 0. Let f�ngn�1 be a non-decreasing sequence in NC such that limn!1 �n D 1 then
k�n.A/k�.��n / 2 O

�
P .
p

log.n/2d�n=2/. Furthermore, for any Borel setA and � > 0 there exists an n 2 N andB 2 �.��n/
such that P.A�B/ � �.

Proof. The universal approximation property of the family of sets � is well known. We provide here for completeness a
simple proof. The set �.�n/ contains many intervals. In particular, to every element x0 in fx W xi 2 ln; i � ng, where
ln D f

P�n
iD1 di=2

i W di 2 f0; 1gg, and any element x00 in fx W xi 2 rn; i � ng, where rn D f1 �
P�n
iD1 di=2

i W di 2 f0; 1gg,
corresponds an interval I D Œx0; x00/ 2 �.�n/. Both,

S
n�1 ln and

S
n�1 rn lie dense in Œ0; 1�. This implies that any half-

open interval Œa;b/, 0 � ai < bi � 1 for all i � d , can be approximated arbitrary well in Lebesgue measure, i.e. for � > 0
and with � denoting Lebesgue-measure, there exists an n 2 N and an I 2 �.�n/ such that Œa;b/ � I and �.InŒa;b// � �.
Consider now any Borel subset A of Œ0; 1�d and � > 0. Let fIngn�1 be a sequence of half-open intervals in Œ0; 1�d such that
A �

S
n�1 In and �.

S
n�1 In/ � �.A/C �=4. Furthermore, select for each In an half-open interval I0n 2

S
m�1 �.�m/

such that In � I0n and �.I0nnIn/ � �=2nC2 then A �
S
n�1 I0n and

�.
[
n�1

I0n/ � �.
[
n�1

I0nn
[
n�1

In/C �.
[
n�1

In/ � �.A/C �=4C �.
[
n�1

.I0nnIn// � �.A/C �=2:

Choose an N such that �.
S
n�N I0n/ � �=2 and define B D

S
n<N I0n 2

S
m�1 �.�m/. Then �.BnA/ �

�.
S
n�1 I0nnA/ � �=2 and �.AnB/ � �.

S
n�1 I0nnB/ � �=2. Hence, �.A�B/ � �. Since P is absolutely continuous

with respect to Lebesgue-measure we can choose for every � > 0 a ı > 0 such that �.A�B/ � ı implies P.A�B/ � �
and the second part of the proposition follows.



Plug-in Estimators for Conditional Expectations and Probabilities

B Conditioning

Proposition B.1 (Proof of Proposition 3.1). If � � BS is a finite set with infB2� P.B/ > 0, F is a subset of ˇ1.P /

uniformly bounded in supremums norm and F� is a P�Donsker class then

sup
f 2F

sup
B2�

jEn .f jB/ �E .f jB/j 2 O
�
P .n

�1=2/:

Furthermore, if � 0 � BS, is such that C 0
�

is a P -Donsker class then

sup
A2� 0

sup
B2�

jPn.AjB/ � P.AjB/j 2 O
�
P .n

�1=2/:

Proof. For a finite family of measurable sets � the corresponding set of indicator functions C is always a P -Donsker class
since for a single element the standard CLT provides the necessary statement and finite unions of P -Donsker classes are
again P -Donsker due to (Dudley, 2014)[Thm 4.34]. Hence,

sup
f 2F ;B2�

ˇ̌̌̌Z
B

f dPn �

Z
B

f dP

ˇ̌̌̌
D sup
f 2F ;B2�

ˇ̌̌̌Z
f � �.B/ dPn �

Z
f � �.B/ dP

ˇ̌̌̌
D O�P .n

�1=2/

and
sup
B2�

jPn.B/ � P.B/j D O
�
P .n

�1=2/:

By definition this implies that for � > 0 there exists an M1 such that Pr�fsupB2� jP.B/ � Pn.B/j > M1n
�1=2g < �=2

for all n � 1. Let N WD d.2M1= infB2� P.B//
2
e. Because infB2� P.B/ > 0, for all n � N we have for any A 2 � that

fPn.A/ < inf
B2�

P.B/=2g � fPn.A/ < P.A/=2g D fP.A/ � Pn.A/ > P.A/=2g

� f sup
B2�

jP.B/ � Pn.B/j > P.A/=2g � f sup
B2�

jP.B/ � Pn.B/j > inf
B02�

P.B 0/=2g

� f sup
B2�

jP.B/ � Pn.B/j > M1n
�1=2
g:

Similarly, there exists an M2 such that Pr�fsupf 2F ;B2�

ˇ̌R
B
f dPn �

R
B
f dP

ˇ̌
> M2n

�1=2g < �=2. The events

�n WD

�
sup
B2�

jP.B/ � Pn.B/j �M1n
�1=2

�
\

(
sup

f 2F ;B2�

ˇ̌̌̌Z
B

f dPn �

Z
B

f dP

ˇ̌̌̌
�M2n

�1=2

)
have outer probability Pr�.�n/ � 1 � � and for all n � N and B 2 � , �n � fPn.B/ � infB02� P.B

0/=2g. In the event
�n, n � N , we know that Pn.B/ > 0 and

En .f jB/ �E .f jB/ (8)

D

�Z
B

f dPn

��
Pn.B/ �

�Z
B

f dP

��
P.B/

D

�
P.B/

Z
B

f dPn � Pn.B/

Z
B

f dP

��
.Pn.B/P.B//

D

 
P.B/

�Z
B

f dPn �

Z
B

f dP

�
C .P.B/ � Pn.B//

Z
B

f dP

!�
.Pn.B/P.B//:

Therefore, for n � N in the event �n,

n1=2 sup
f 2F ;B2�

ˇ̌̌̌ �Z
B

f dPn

��
Pn.B/ �

�Z
B

f dP

��
P.B/

ˇ̌̌̌
� 2 .M2 C bM1/

ı
c2;

where b WD supx2S;f 2F jf .x/j and c WD infB2� P.B/ > 0.

For any n < N and B with Pn.B/ D 0 the estimate En .f jB/ D 0 by definition and

sup
f 2F

jEn .f jB/ �E .f jB/j D sup
f 2F

ˇ̌̌̌ �Z
B

f dP

��
P.B/

ˇ̌̌̌
� b <1:
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For any n < N with Pn.B/ > 0 we have that

n1=2 sup
f 2F ;B2�

ˇ̌̌̌ �Z
B

f dPn

��
Pn.B/ �

�Z
B

f dP

��
P.B/

ˇ̌̌̌
� 2n1=2b <1

and with the constant M WD maxf2.M2 C bM1/=c
2; 2N 1=2bg we have

Pr�f sup
f 2F

sup
B2�

jEn .f jB/ �E .f jB/j > Mn�1=2g � �:

This is sufficient to prove the first claim. The second claim follows from the first by substituting C 0 for F .

Proposition B.2 (Proof of Proposition 3.2). If � � BS, C and F� are P -Donsker classes, F is a subset of ˇ1.P /

uniformly bounded in supremums norm and P has a density which is lower bounded by a constant b > 0 then with
�n WD fC W C 2 � ; �.C / � n�˛g and ˛ 2 Œ0; 1=2/

sup
f 2F

sup
B2�n

jEn .f jB/ �E .f jB/j 2 O
�
P .n

˛�1=2/:

Furthermore, if � 0 � BS is such that C 0
�

is a P -Donsker class then

sup
A2� 0

sup
B2�n

jPn.AjB/ � P.AjB/j 2 O
�
P .n

˛�1=2/:

Proof. As in the the proof of Proposition 3.1, supf 2F ;B2�

ˇ̌R
B
f dPn �

R
B
f dP

ˇ̌
2 O�P .n

�1=2/ and
supB2� jPn.B/ � P.B/j 2 O�P .n

�1=2/. Hence, for a given � > 0 there exists a M1 such that
Pr�fsupB2� jP.B/ � Pn.B/j > M1n

�1=2g < �=2. In particular, since by assumption infB02�n P.B
0/=2 �

b infB02�n �.B
0/=2 � .b=2/n�˛ we have for N WD d.2M1=b/

1=.1=2�˛/e and all n � N;B 2 �n that

fPn.B/ < inf
B02�n

P.B 0/=2g � f sup
B2�n

jP.B/ � Pn.B/j > inf
B02�n

P.B 0/=2g

� f sup
B2�n

jP.B/ � Pn.B/j > .b=2/n
�˛
g � f sup

B2�n

jP.B/ � Pn.B/j > M1n
�1=2
g

� f sup
B2�

jP.B/ � Pn.B/j > M1n
�1=2
g:

and, since the last event has an outer probability strictly less than �=2, there exists anM2 such that for all n � N the events

�n WD

�
sup
B2�

jP.B/ � Pn.B/j �M1n
�1=2

�
\

(
sup

f 2F ;B2�

ˇ̌̌̌Z
B

f dPn �

Z
B

f dP

ˇ̌̌̌
�M2n

�1=2

)
have outer probability Pr�.�n/ � 1 � � and fPn.B/ � infB02�n P.B

0/=2g � �n for all n � N .

Using the bound (8)ˇ̌̌̌ �Z
B

f dPn

��
Pn.B/ �

�Z
B

f dP

��
P.B/

ˇ̌̌̌
�

ˇ̌̌̌�Z
B

f dPn �

Z
B

f dP

��
Pn.B/

ˇ̌̌̌
C

ˇ̌̌̌
.P.B/ � Pn.B//

Z
B

f dP

�
.Pn.B/P.B//

ˇ̌̌̌
:

Let c D supx2S supf 2F jf .x/j <1 then
ˇ̌R
B
f dP

ˇ̌
� cP.B/ and, since Pn.B/ � .b=2/n�˛ on �n, for n � N

sup
f 2F

sup
B2�n

jEn .f jB/ �E .f jB/j � .2M2=b/n
˛�1=2

C .2cM1=b/n
˛�1=2:

As in the the proof of Proposition 3.1 the errors for n < N can be bounded since infn<N infB2�n P.B/ � bN
�˛ and the

first result follows. Substituting C 0 for F yields the second claim.

Lemma B.1. If G is a � -algebra consisting of finite many elements then there exists a unique partition PG such that each
element of G can be represented as a finite union of elements of PG .
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Proof. (i) Uniqueness. Assume there are two partitions PG and P 0
G

. There must be an element B 2 P 0
G

that is not in
P 0

G
(or vice versa) since otherwise P 0

G
D PG .This B is equal to A1 [ : : : [ An for some n 2 N and disjoint, non-empty,

elements A1; : : : ; An 2 PG . Now A1 ¨ B but A1 cannot be a finite union of elements of P 0
G

since P 0
G

is a partition.

(ii) Enumerate G as A1; : : : ; An where n is the cardinality of G . We construct a partition iterartively. I.e. we construct for
each i � n a family of sets Bi D fB1i ; : : : ; Bmi ;ig that is disjoint and such that A1; : : : Ai can be represented as unions of
the Bj;i elements. For i D 1 let B11 D A1. Now assume we have such a family of sets for i and we want to get a family
of disjoint sets for A1; : : : ; AiC1. Consider the following family of set

BiC1 D fAiC1n
[

Big [ fBnAiC1 W B 2 Big [ fAiC1 \ B W B 2 Big:

Clearly ever B 2 Bi can still be represented as a union of elements since B D .BnAiC1/ [ .B \ AiC1/. Similarly,
AiC1 D .AiC1n

S
Bi / [ .AiC1 \

S
Bi / can be represented. The family of sets is also disjoint: any element of the

form BnAiC1 is certainly disjoint from any B 0 \ AiC1 and AiC1nB 00 � AiC1n
S

Bi . Also, since the elements in
Bi are disjoint any two BnAiC1 and B 0nAiC1 will be disjoint. Finally, any AiC1 \ B is disjoint of AiC1n

S
Bi and

.AiC1 \ B/ \ .AiC1 \ B
0/ D ;. This concludes the induction.

Proposition B.3 (Proof of Proposition 3.3). If G � BS is a � -algebra consisting of finite many sets, F is a subset of
ˇ1.P / uniformly bounded in supremums norm, FG is a P�Donsker class then

sup
f 2F

kEn .f jG / �E .f jG / kˇ1.P / 2 O
�
P .n

�1=2/:

Furthermore, if � � BS, is such that CG is a P -Donsker class then

sup
A2�

kPn .A jG / � P .A jG / kˇ1.P / 2 O
�
P .n

�1=2/:

Proof. If P.B/ D 0 for some B 2 G then
R
B
.En .f jG / � E .f jG // dP D 0. Let G 0 D fB W B 2 G ; P.B/ > 0g then

from Proposition 3.1 it follows that

sup
f 2F

sup
B2G 0

jEn .f jB/ �E .f jB/ j 2 O
�
P .n

�1=2/:

For � > 0, chooseM;N such that Fn D fsupf 2F supB2G 0 jEn .f jB/�E .f jB/ j �Mn�1=2g has probability P.Fn/ �
1 � � for all n � N . For B 2 G 0, let B1; : : : ; Bm 2 PG � G such that B D B1 [ : : : [ Bm, then P -a.s. E.f jG / DP
i�mE.f jBi / � �Bi andˇ̌Z

B

.En.f jG / �E.f jG // dP
ˇ̌
�

X
i�m

ˇ̌Z
B\Bi

.En.f jBi / �E.f jBi // dP
ˇ̌

�

X
i�m

jEn.f jBi / �E.f jBi /jP.B \ Bi / �Mn�1=2
X
i�m

P.B \ Bi /

DMn�1=2P.B/ �Mn�1=2:

Furthermore,

kEn.f jG / �E.f jG /kˇ1.P / � 2 sup
B2G

ˇ̌Z
B

En.f jG / �E.f jG / dP
ˇ̌
� 2Mn�1=2:

This implies the result. The second result follows again from the first.

Proposition B.4 (Proof of Proposition 3.4). Let .Œ0; 1�d ;B; P / be a probability space such that P has a density p that is
lower bounded by b > 0 and let f�ngn�1 be a non-decreasing sequence in NC such that

�n 2 o

�
1

3d log.2/
log
� np

log.n/

��
:

If F is a subset of ˇ1.P / uniformly bounded in supremums norm which fulfills Equation 4, then

sup
f 2F

kEn
�
f
ˇ̌
G�n

�
�E

�
f
ˇ̌
G�n

�
k1 2 O

�
P .
p

log.n/2.3=2/d�nn�1=2/:
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Furthermore, if � � BS, is such that C fulfills Equation 4 then

sup
A2�

kPn
�
A
ˇ̌
G�n

�
� P

�
A
ˇ̌
G�n

�
k1 2 O

�
P .
p

log.n/2.3=2/d�nn�1=2/:

Proof. By assumption and from Corollary 2.1 we know that

sup
f 2F

sup
B2G�n

ˇ̌Z
B

f dPn �

Z
B

fdP
ˇ̌
2 O�P .

p
log.n/2d�n=2n�1=2/;

sup
B2G�n

jPn.B/ � P.B/j 2 O
�
P .
p

log.n/2d�n=2n�1=2/:

Furthermore, infB2G�n
P.B/ � b2�d�n . By combining the technique in the proof of Proposition 3.2 with the assumption

on the rate of �n we have for any B 2 G�n thatn
Pn.B/ < inf

B02G�n

P.B 0/=2
o
�

n
sup

B2G�n

jP.B/ � Pn.B/j > M
p

log.n/2d�n=2n�1=2
o

for some constant N;M and all n � N . The same line of reasoning as in Proposition 3.2 then shows

sup
f 2F

sup
B2G�n

jEn.f jB/ �E.f jB/j 2 O
�
P .
p

log.n/2.3=2/d�nn�1=2/:

Substituting in the definition of En.f jG�n/ and E.f jG�n/ gives us the first result,

sup
f 2F

kEn.f jG�n/ �E.f jG�n/k1 � sup
f 2F

sup
B2G�n

jEn.f jB/ �E.f jB/j 2 O
�
P .
p

log.n/2.3=2/d�nn�1=2/:

The second claim is directly implied by this result.
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