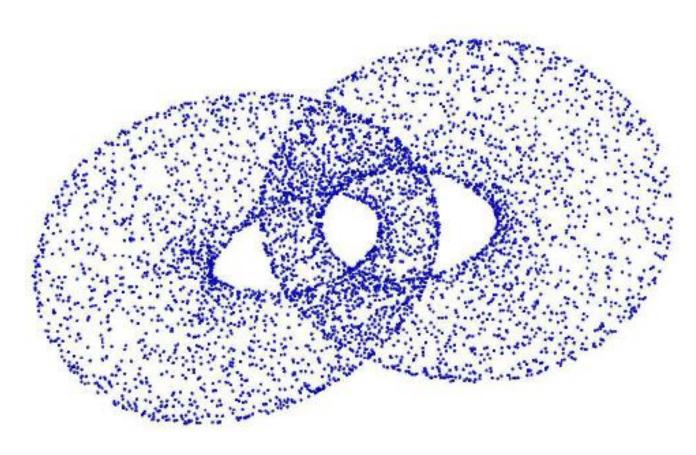
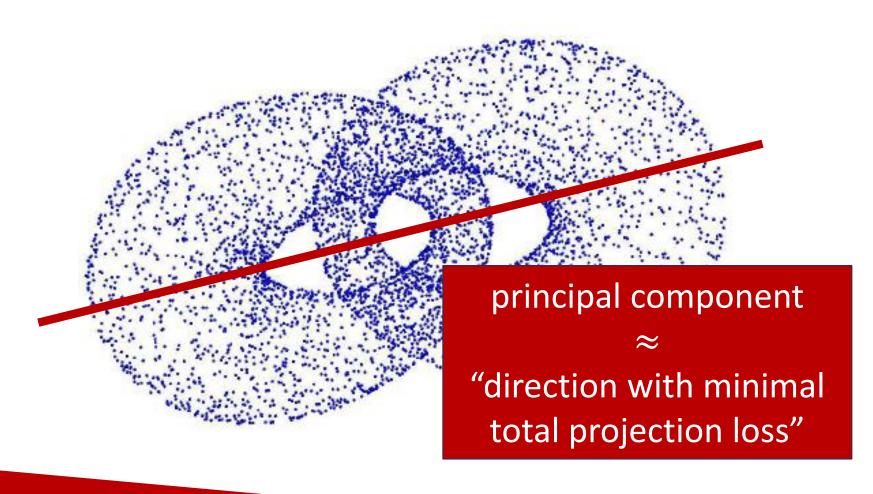
Gergely Neu
Univ. Pompeu Fabra (Barcelona, Spain)
joint work with Wojciech Kotłowski

Appetizer bandit PCA, bandit PCA, phase retrieval

Principal component analysis (PCA)



Principal component analysis (PCA)



- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)

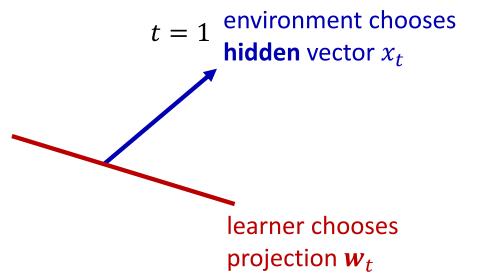
- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)

$$t = 1$$

- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)

```
t = 1 environment chooses hidden vector x_t
```

- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)



Principal Component Analysis with

- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)

$$t = 1$$
 environment chooses hidden vector x_t

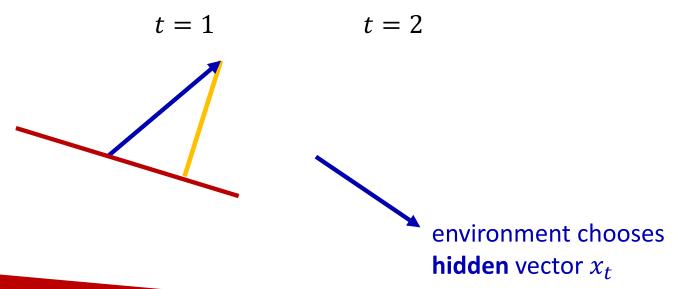
Learner incurs and observes projection loss $1 - (w_t^T x_t)^2$

learner chooses projection w_t

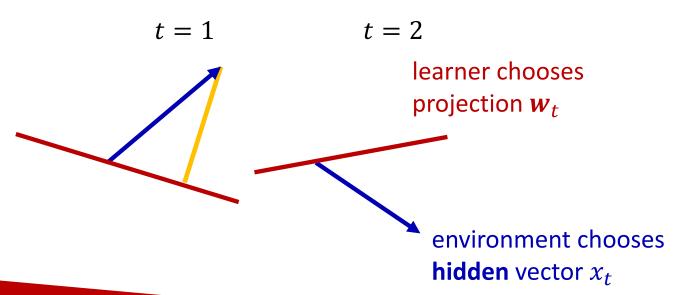
- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)

$$t = 1$$
 $t = 2$

- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)

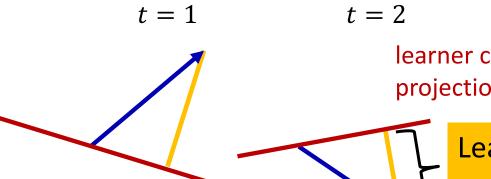


- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)



Principal Component Analysis with

- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)

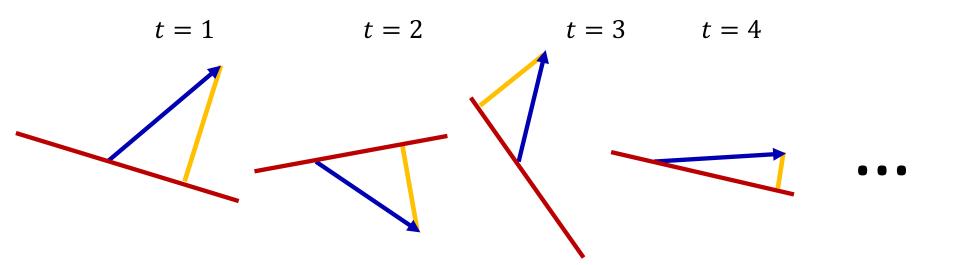


learner chooses projection w_t

> Learner incurs and observes projection loss $1 - (w_t^T x_t)^2$

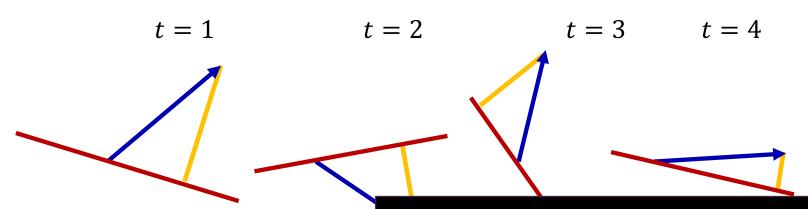
environment chooses **hidden** vector x_t

- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)



Principal Component Analysis with

- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)

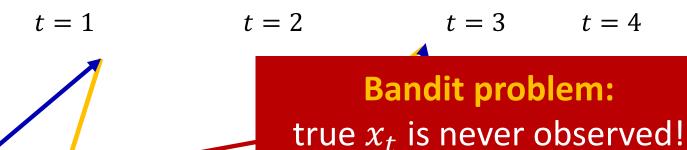


JUAL.

minimize total projection loss

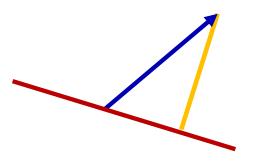
Principal Component Analysis with

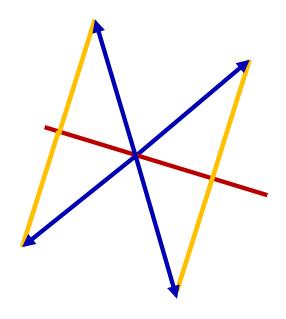
- sequentially chosen projections (online PCA)
- partial observability (bandit PCA)



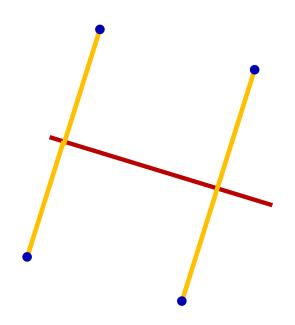
GOAL:

minimize total projection loss

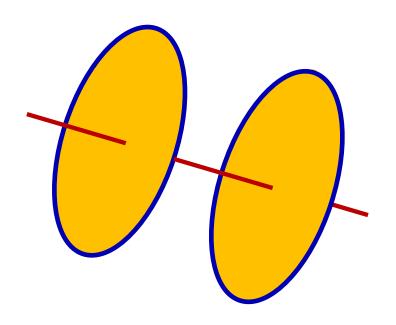




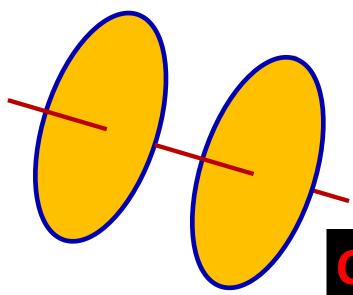
 x_t is ambiguous!



 x_t is ambiguous!



 x_t is ambiguous! even worse in high dim



 x_t is ambiguous! even worse in high dim

Challenge:

How do we reconstruct x_t from a single projection?

NB: $\pm x_t$ are impossible to tell apart with any number of projections

Bandit PCA ≈ online phase retrieval

Bandit PCA ≈ online phase retrieval

Phase retrieval:

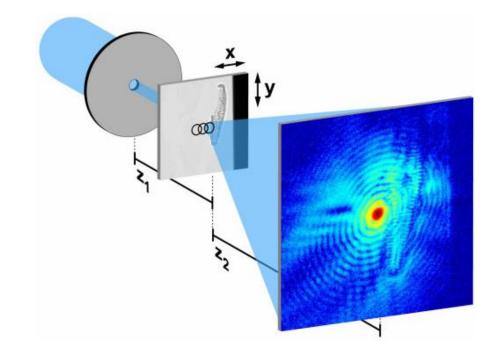
- $\mathbf{w}_t \sim \mathcal{N}(0, I_{d \times d})$ i.i.d.
- $x_t = x$ fixed
- Observations:

$$|x^{\mathsf{T}}w_t|^2$$
 (+noise)

Bandit PCA ≈ online phase retrieval

Phase retrieval:

- $\mathbf{w}_t \sim \mathcal{N}(0, I_{d \times d})$ i.i.d.
- $x_t = x$ fixed
- Observations: $|x^T w_t|^2$ (+noise)
- Applications in
 - diffractive imaging
 - X-ray crystallography
 - astronomy...



Fienup (1982), Millane (1990)

Bandit PCA ≈ online phase retrieval

Phase retrieval:

- $\mathbf{w}_t \sim \mathcal{N}(0, I_{d \times d})$ i.i.d.
- $x_t = x$ fixed
- Observations: $|x^T w_t|^2$ (+noise)
- Applications in
 - diffractive imaging
 - X-ray crystallography
 - astronomy...

Bandit PCA:

- w_t chosen adaptively
- x_t arbitrary
- Observations:

$$|x_t^\mathsf{T} w_t|^2$$
 (+noise)

Fienup (1982), Millane (1990)

Bandit PCA ≈ online phase retrieval

Phase retrieval:

- $\boldsymbol{w}_t \sim \mathcal{N}(0, I_{d \times d})$ i.i.d.
- $x_t = x$ fixed
- Observations: $|x^T w_t|^2$ (+noise)
- Applications in
 - diffractive imaging
 - X-ray crystallography
 - astronomy...

Bandit PCA:

- w_t chosen adaptively
- x_t arbitrary
- Observations:

$$|x_t^T w_t|^2$$
 (+noise)

Applicable in the same settings but with adaptive measurements!

Fienup (1982), Millane (1990)

Let's get technical

Classic tricks for online PCA

Bandit PCA – general framework

For t = 1, 2, ..., T

- Environment picks secret loss matrix L_t
- Learner picks unit-norm vector w_t
- Learner incurs and observes loss $\boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t \boldsymbol{w}_t$

Generalizes the basic PCA setup with $\boldsymbol{L}_t = \boldsymbol{x}_t \boldsymbol{x}_t^{\mathsf{T}}$

Bandit PCA – general framework

For t = 1, 2, ..., T

- Environment picks secret loss matrix $m{L}_t$
- Learner picks unit-norm vector w_t
- Learner incurs and observes loss $\boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t \boldsymbol{w}_t$

Generalizes the basic PCA setup with $oldsymbol{L}_t = oldsymbol{x}_t oldsymbol{x}_t^{\mathsf{T}}$

GOAL:

minimize total expected regret

$$\operatorname{regret}_T = \max_{\boldsymbol{u}: \|\boldsymbol{u}\| = 1} \mathbb{E} \left[\sum_{t=1}^T (\boldsymbol{w}_t^\mathsf{T} \boldsymbol{L}_t \boldsymbol{w}_t - \boldsymbol{u}^\mathsf{T} \boldsymbol{L}_t \boldsymbol{u}) \right]$$

Bandit PCA – general framework

```
For t = 1, 2, ..., T
```

- Environment picks secret loss matrix $m{L}_t$
- Learner picks unit-norm vector w_t
- Learner incurs and observes loss $\boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t \boldsymbol{w}_t$

Generalizes the basic PCA setup with $L_t = \kappa_t x_t^{\mathsf{T}}$

```
n Nonlinear loss!!!! ret
\operatorname{regret}_{T} = \max_{\boldsymbol{u}:\|\boldsymbol{u}\|=1} \mathbb{E} \left[ \sum_{t=1}^{\infty} (\boldsymbol{w}_{t}^{\mathsf{T}} \boldsymbol{L}_{t} \boldsymbol{w}_{t} - \boldsymbol{u}^{\mathsf{T}} \boldsymbol{L}_{t} \boldsymbol{u}) \right]
```

Linearizing the losses: SDP formulation

Warmuth and Kuzmin (2006,2008)

Observation #1:

• Loss is linear in matrix variable $w_t w_t^{\mathsf{T}}$: $w_t^{\mathsf{T}} L_t w_t = \operatorname{tr}(w_t w_t^{\mathsf{T}} L_t)$

Linearizing the losses: SDP formulation

Warmuth and Kuzmin (2006,2008)

Observation #1:

• Loss is linear in matrix variable $w_t w_t^{\mathsf{T}}$:

$$\boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t \boldsymbol{w}_t = \operatorname{tr}(\boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t)^{\mathsf{T}}$$

Observation #2:

• The non-convex set of matrices ww^{\top} can be convexified through randomization:

$$S = \text{conv}(ww^{\mathsf{T}}: ||w|| = 1)$$

= $\{W: W \ge 0, \text{tr}(W) = 1\}$

Bandit PCA = Bandit linear optimization

For
$$t = 1, 2, ..., T$$

- Environment picks secret loss matrix $m{L}_t$
- Learner picks density matrix $W_t \in \mathcal{S}$
- Learner draws random w_t s.t. $\mathbb{E}[w_t w_t^{\mathsf{T}}] = W_t$
- Learner incurs and observes loss

$$\langle \boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}}, \boldsymbol{L}_t \rangle \stackrel{\text{def}}{=} \operatorname{tr}(\boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t)$$

Bandit PCA = Bandit linear optimization

For t = 1, 2, ..., T

- Environment picks secret loss matrix L_t
- Learner picks density matrix $W_t \in \mathcal{S}$
- Learner draws random \mathbf{w}_t s.t. $\mathbb{E}[\mathbf{w}_t \mathbf{w}_t^{\mathsf{T}}] = \mathbf{W}_t$
- Learner incurs and observes loss $\langle w_t w_t^{\mathsf{T}}, L_t \rangle \stackrel{\text{def}}{=} \operatorname{tr}(w_t w_t^{\mathsf{T}} L_t)$

Idea:

Apply a generic linear bandit algorithm!

Bandit PCA = Bandit linear optimization

For t = 1, 2, ..., T

- Environment picks secret loss matrix L_t
- Learner picks density matrix $W_t \in S$
- Learner draws random \mathbf{w}_t s.t. $\mathbb{E}[\mathbf{w}_t \mathbf{w}_t^{\mathsf{T}}] = \mathbf{W}_t$
- Learner incurs and observes loss $\langle w_t w_t^{\mathsf{T}}, L_t \rangle \stackrel{\text{def}}{=} \operatorname{tr}(w_t w_t^{\mathsf{T}} L_t)$

Idea:

Apply a generic linear bandit algorithm!

GeometricHedge guarantees $\operatorname{regret}_T = \tilde{O}(d^2\sqrt{T})$

Dani, Hayes, Kakade (2008), Bubeck and Eldan (2015)

Bandit PCA = Bandit linear optimization

For t = 1, 2, ..., T

- Environment picks secret loss matrix L_t
- Learner picks density matrix $W_t \in S$
- Learner draws random \mathbf{w}_t s.t. $\mathbb{E}[\mathbf{w}_t \mathbf{w}_t^{\mathsf{T}}] = \mathbf{W}_t$
- Learner incurs and observes loss $\langle w_t w_t^{\mathsf{T}}, L_t \rangle \stackrel{\text{def}}{=} \operatorname{tr}(w_t w_t^{\mathsf{T}} L_t)$

Idea:

Apply a generic linear bandit algorithm!

GeometricHedge guarantees $\operatorname{regret}_T = \tilde{O}(d^2\sqrt{T})$

Dani, Hayes, Kakade (2008), Bubeck and Eldan (2015) BUT
no polytime
implementation
is known 888

Bandit PCA = Bandit linear optimization

For $t = 1, 2, \dots, T$

- Environment picks secret loss matrix $m{L}_t$
- Learner picks density matrix $W_t \in S$
- Learner draws random w_t s.t. $\mathbb{E}[w_t w_t^{\mathsf{T}}] = W_t$

Idea:

Apply a generic

Jipoar bandit

:hm!

Our contribution:

a fast algorithm with regret $O(d^{3/2}\sqrt{T\log T})$

Dani, Hayes, Kakade (2008), Bubeck and Eldan (2015) is known 888

Main course Algorithm

Main results

Main course Algorithm Main results

Idea: rely on the good old template

$$W_{t+1} = \arg\min_{W \in \mathcal{S}} \{ \eta \langle W, \hat{L}_t \rangle + D(W || W_t) \}$$

Idea: rely on the good old template

$$W_{t+1} = \arg\min_{\mathbf{W} \in \mathcal{S}} \{ \eta \langle \mathbf{W}, \hat{\mathbf{L}}_t \rangle + D(\mathbf{W} || \mathbf{W}_t) \}$$

Sample w_t so that $\mathbb{E}[w_t w_t^{\mathsf{T}}] = W_t$

loss estimate $\hat{L}_t = ?$ go divergence D = ?

$$W_{t+1} = \arg\min_{\mathbf{W} \in \mathcal{S}} \{ \eta \langle \mathbf{W}, \hat{\mathbf{L}}_t \rangle + D(\mathbf{W} || \mathbf{W}_t) \}$$

sampling scheme?

Sample w_t so that $\mathbb{E}[w_t w_t^{\mathsf{T}}] = W_t$

loss estimate $\hat{L}_t = ?$

Recall:

$$\sum_{i} \lambda_{i} = \operatorname{tr}(W) = 1$$
$$\lambda_{i} \ge 0$$

First thought:

decompose
$$m{W}_t = \sum_i \lambda_i m{u}_i m{u}_i^{\mathsf{T}}$$
 and sample w_t so that $\mathbb{P}[m{w}_t = m{u}_i] = \lambda_i$

Warmuth and Kuzmin (2006)

Recall:

$$\sum_{i} \lambda_{i} = \operatorname{tr}(W) = 1$$
$$\lambda_{i} \ge 0$$

First thought:

decompose
$$m{W}_t = \sum_i \lambda_i m{u}_i m{u}_i^{\mathsf{T}}$$
 and sample w_t so that $\mathbb{P}[m{w}_t = m{u}_i] = \lambda_i$

Warmuth and Kuzmin (2006)

Unbiased:
$$\mathbb{E}[\boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}}] = \boldsymbol{W}_t$$

Recall:

$$\sum_{i} \lambda_{i} = \operatorname{tr}(W) = 1$$
$$\lambda_{i} \ge 0$$

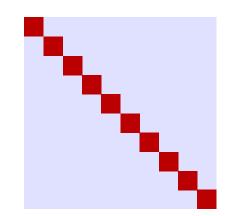
First thought:

decompose
$$m{W}_t = \sum_i \lambda_i m{u}_i m{u}_i^{\mathsf{T}}$$
 and sample w_t so that $\mathbb{P}[m{w}_t = m{u}_i] = \lambda_i$

Warmuth and Kuzmin (2006)

Unbiased:
$$\mathbb{E}[\boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}}] = \boldsymbol{W}_t$$

only senses "diagonal" elements of $L_t \otimes \otimes$



Recall:

$$\sum_{i} \lambda_{i} = \operatorname{tr}(W) = 1$$
$$\lambda_{i} \ge 0$$

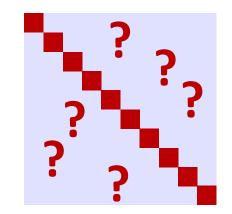
First thought:

decompose
$$m{W}_t = \sum_i \lambda_i m{u}_i m{u}_i^{\mathsf{T}}$$
 and sample w_t so that $\mathbb{P}[m{w}_t = m{u}_i] = \lambda_i$

Warmuth and Kuzmin (2006)

Unbiased:
$$\mathbb{E}[\boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}}] = \boldsymbol{W}_t$$

only senses "diagonal" elements of $L_t \otimes \otimes$



Sparse sampling

sample two indices

$$i, j \sim \lambda$$

• if i = j, set

$$w_t = u_i$$

$$\boldsymbol{w}_t = \frac{1}{\sqrt{2}} \big(\boldsymbol{u}_i + s \boldsymbol{u}_j \big)$$

Sparse sampling

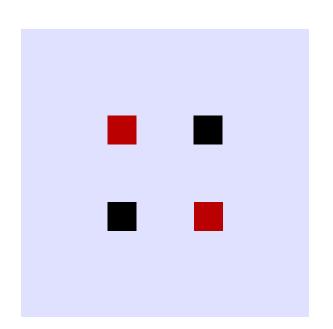
sample two indices

$$i,j \sim \lambda$$

• if i = j, set

$$w_t = u_i$$

$$\boldsymbol{w}_t = \frac{1}{\sqrt{2}} \big(\boldsymbol{u}_i + s \boldsymbol{u}_j \big)$$



Sparse sampling

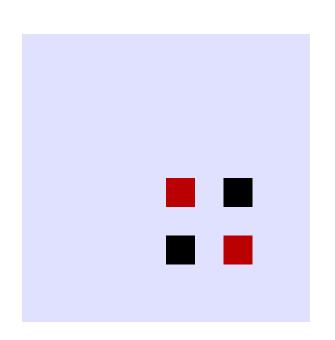
sample two indices

$$i, j \sim \lambda$$

• if i = j, set

$$\boldsymbol{w}_t = \boldsymbol{u}_i$$

$$\boldsymbol{w}_t = \frac{1}{\sqrt{2}} \big(\boldsymbol{u}_i + s \boldsymbol{u}_j \big)$$



Sparse sampling

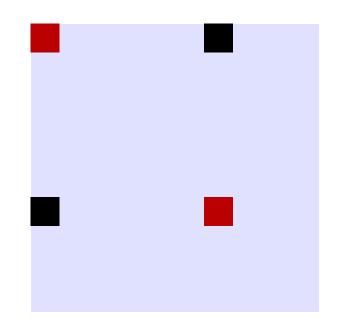
sample two indices

$$i,j \sim \lambda$$

• if i = j, set

$$\boldsymbol{w}_t = \boldsymbol{u}_i$$

$$\boldsymbol{w}_t = \frac{1}{\sqrt{2}} \big(\boldsymbol{u}_i + s \boldsymbol{u}_j \big)$$



Sparse sampling

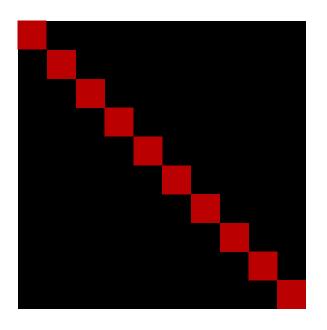
sample two indices

$$i, j \sim \lambda$$

• if i = j, set

$$w_t = u_i$$

$$\boldsymbol{w}_t = \frac{1}{\sqrt{2}} \big(\boldsymbol{u}_i + s \boldsymbol{u}_j \big)$$



Sampling and loss estimation done right

Sparse sampling

sample two indices

$$i, j \sim \lambda$$

• if i = j, set

$$w_t = u_i$$

• otherwise draw random sign $s \in \{-1,1\}$ and set

$$\boldsymbol{w}_t = \frac{1}{\sqrt{2}} \big(\boldsymbol{u}_i + s \boldsymbol{u}_j \big)$$

Loss estimation

- let $\ell = \boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t \boldsymbol{w}_t$
- if i = j, set

$$\hat{\boldsymbol{L}}_t = \frac{\ell}{\lambda_i^2} \boldsymbol{u}_i \boldsymbol{u}_i^{\mathsf{T}}$$

otherwise set

$$\hat{\boldsymbol{L}}_t = \frac{s\ell}{\lambda_i \lambda_i} (\boldsymbol{u}_j \boldsymbol{u}_i^{\mathsf{T}} + \boldsymbol{u}_i \boldsymbol{u}_j^{\mathsf{T}})$$

Sampling and loss estimation done right

Sparse sampling

• sample two indices

$$i, j \sim \lambda$$

• if i = j, set

$$\boldsymbol{w}_t = \boldsymbol{u}_i$$

• otherwise draw random sign $s \in \{-1,1\}$ and set

Lemma:

$$\mathbb{E}[\boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}}] = \boldsymbol{W}_t$$

Loss estimation

• let
$$\ell = \boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t \boldsymbol{w}_t$$

• if i = j, set

$$\hat{\boldsymbol{L}}_t = \frac{\ell}{\lambda_i^2} \boldsymbol{u}_i \boldsymbol{u}_i^{\mathsf{T}}$$

otherwise set

$$\widehat{\boldsymbol{L}}_t = \frac{s\ell}{-(\boldsymbol{u}_i \boldsymbol{u}_i^{\mathsf{T}} + \boldsymbol{u}_i \boldsymbol{u}_j^{\mathsf{T}})}$$
Lemma:

$$\mathbb{E}[\hat{L}_t] = L_t$$

divergence D = ?

What divergence?

First thought:

the usual quantum relative entropy

$$D(\boldsymbol{W}||\boldsymbol{U}) = \boldsymbol{W}\log(\boldsymbol{W}\boldsymbol{U}^{-1})$$

induced by the quantum entropy $R(W) = W \log W$

What divergence?

First thought:

the usual quantum relative entropy

$$D(\boldsymbol{W}||\boldsymbol{U}) = \boldsymbol{W}\log(\boldsymbol{W}\boldsymbol{U}^{-1})$$

induced by the quantum entropy $R(W) = W \log W$

a.k.a. "Matrix Hedge"

Warmuth and Kuzmin (2006)

Matrix Hedge for Bandit PCA does not work?

W.K.

June 25, 2018

Consider the adversarial k = 1 PCA with bandit feedback. In each trial, the algorithm plays with a rank-one matrix $\boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}}$ with $\boldsymbol{w}_t \in \mathbb{R}^d$, $\|\boldsymbol{w}_t\| = 1$. Then, nature chooses a symmetric loss matrix $\boldsymbol{L}_t \in \mathbb{R}^{d \times d}$ with eigenvalues bounded in [0, 1], and the algorithm receives and observes loss $\ell_t = \operatorname{tr}(\boldsymbol{w}_t \boldsymbol{w}_t^{\mathsf{T}} \boldsymbol{L}_t)$.

We start with a standard bound on the Matrix Hedge algorithm: for any loss sequence L_1, \ldots, L_T such that each \widetilde{L}_t has eigenvalues in the range $[-a, \infty)$, the sequence of density matrices W_1, \ldots, W_T produced by Matrix Hedge with fixed learning rate η has regret against a comparator density matrix U upper-bounded by:

$$\operatorname{regret}_T(\boldsymbol{U}) = \sum_{t=1}^T \operatorname{tr}((\boldsymbol{W}_t - \boldsymbol{U})\widetilde{\boldsymbol{L}}_t) \leq \frac{\ln d}{\eta} + \kappa(\eta a) \eta \sum_{t=1}^T \operatorname{tr}(\boldsymbol{W}_t \widetilde{\boldsymbol{L}}_t^2),$$

where $\kappa(x) = \frac{e^x - x - 1}{x^2}$. The trick is now to use this bound in the bandit case as follows: in each trial t = 1, ..., T, the algorithm probabilistically chooses $\boldsymbol{w}_t \boldsymbol{w}_t^{\top}$ such that $\mathbb{E}_t[\boldsymbol{w}_t \boldsymbol{w}_t^{\top}] = \boldsymbol{W}_t$ (where $\mathbb{E}_t[\cdot]$ denotes the conditional expectation with respect the randomness at trial t, conditioned on all the past); then, the algorithm observes ℓ_t and produced an estimate $\tilde{\boldsymbol{L}}_t$ of the loss matrix \boldsymbol{L}_t , with eigenvalues in $[-a, \infty]$, such that $\mathbb{E}_t[\tilde{\boldsymbol{L}}_t] = \boldsymbol{L}_t + c_t \boldsymbol{I}$ (the estimate is allowed to be biased by a multiplicity of identity matrix!). The expected regret of the algorithm is given by:

T

Matrix Hedge for Bandit PCA does not work?

W.K.

June 25, 2018

Doesn't work indeed

In each trial, the algorithm plays with a e chooses a symmetric loss matrix $L_t \in$ ives and observes loss $\ell_t = \operatorname{tr}(\boldsymbol{w}_t \boldsymbol{w}_t^{\top} L_t)$.

We start with a standard bound on the Matrix Hedge algorithm: for any loss sequence $\widetilde{L}_1, \ldots, \widetilde{L}_T$ such that each \widetilde{L}_t has eigenvalues in the range $[-a, \infty)$, the sequence of density matrices W_1, \ldots, W_T produced by Matrix Hedge with fixed learning rate η has regret against a comparator density matrix U upper-bounded by:

$$\operatorname{regret}_T(\boldsymbol{U}) = \sum_{t=1}^T \operatorname{tr}((\boldsymbol{W}_t - \boldsymbol{U})\widetilde{\boldsymbol{L}}_t) \leq \frac{\ln d}{\eta} + \kappa(\eta a) \eta \sum_{t=1}^T \operatorname{tr}(\boldsymbol{W}_t \widetilde{\boldsymbol{L}}_t^2),$$

where $\kappa(x) = \frac{e^x - x - 1}{x^2}$. The trick is now to use this bound in the bandit case as follows: in each trial t = 1, ..., T, the algorithm probabilistically chooses $\boldsymbol{w}_t \boldsymbol{w}_t^{\top}$ such that $\mathbb{E}_t[\boldsymbol{w}_t \boldsymbol{w}_t^{\top}] = \boldsymbol{W}_t$ (where $\mathbb{E}_t[\cdot]$ denotes the conditional expectation with respect the randomness at trial t, conditioned on all the past); then, the algorithm observes ℓ_t and produced an estimate $\tilde{\boldsymbol{L}}_t$ of the loss matrix \boldsymbol{L}_t , with eigenvalues in $[-a, \infty]$, such that $\mathbb{E}_t[\tilde{\boldsymbol{L}}_t] = \boldsymbol{L}_t + c_t \boldsymbol{I}$ (the estimate is allowed to be biased by a multiplicity of identity matrix!). The expected regret of the algorithm is given by:

T

Matrix Hedge for Bandit PCA does not work?

W.K.

June 25, 2018

Doesn't work indeed

In each trial, the algorithm plays with a e chooses a symmetric loss matrix $L_t \in$ ives and observes loss $\ell_t = \operatorname{tr}(\boldsymbol{w}_t \boldsymbol{w}_t^{\top} \boldsymbol{L}_t)$.

in the bandit case as follows: in each trial

We start with a standard bound on the Matrix Hedge algorithm: for any loss sequence L_1, \ldots, L_T such that each \widetilde{L}_t has eigenvalues in the range $[-a, \infty)$, the sequence of density matrices W_1, \ldots, W_T produced by Matrix Hedge with fixed learning rate η has regret against a comparator density matrix U

$$\mathrm{regret}_T(\boldsymbol{U}) = \sum_{t=1}^T \mathrm{tr}((\boldsymbol{W}_t - \boldsymbol{U})\widetilde{\boldsymbol{L}}_t) \leq \frac{\ln d}{\eta} + \kappa(\eta a)\eta \sum_{t=1}^T \mathrm{tr}(\boldsymbol{W}_t\widetilde{\boldsymbol{L}}_t^2),$$

where $\kappa(x) = \frac{e^x - x - 1}{x^2}$. The trick is now to use the $t = 1, \ldots, T$, the algorithm probabilistically choosed denotes the conditional expectation with restriction, the algorithm observes ℓ_t and produce $[-a, \infty]$ that $\mathbb{E}_t[\widetilde{L}_t] = L_t + c_t I$ (the ematrix zero pected regret of the algorithm

This bound is virtually useless

(for complicated reasons)

past); nes in entity

The right divergence

$$D(\boldsymbol{W}||\boldsymbol{U}) = \operatorname{tr}(\boldsymbol{W}\boldsymbol{U}^{-1}) - \log \det(\boldsymbol{W}\boldsymbol{U}^{-1}) - d$$

The Bregman divergence induced by $R(W) = -\log \det W$

a.k.a. Stein's loss (James and Stein, 1967)

The right divergence

$$D(\boldsymbol{W}||\boldsymbol{U}) = \operatorname{tr}(\boldsymbol{W}\boldsymbol{U}^{-1}) - \log \det(\boldsymbol{W}\boldsymbol{U}^{-1}) - d$$

The Bregman divergence induced by $R(W) = -\log \det W$ a.k.a. Stein's loss (James and Stein, 1967)

The matrix generalization of the trendy "log-barrier" regularizer $-\sum_i \log p_i$ (Foster et al., 2016, Agarwal et al., 2017, Bubeck et al. 2018, Wei and Luo, 2018, Luo et al., 2018, ...)

loss estimate $\hat{L}_t = ?$ go divergence D = ?

$$W_{t+1} = \arg\min_{\mathbf{W} \in \mathcal{S}} \{ \eta \langle \mathbf{W}, \hat{\mathbf{L}}_t \rangle + D(\mathbf{W} || \mathbf{W}_t) \}$$

sampling scheme?

Sample w_t so that $\mathbb{E}[w_t w_t^{\mathsf{T}}] = W_t$

loss estimate $\hat{L}_t = \hat{L}_g$

$$W_{t+1} = \arg\min_{\mathbf{W} \in \mathcal{S}} \{ \eta \langle \mathbf{W}, \hat{\mathbf{L}}_t \rangle + D(\mathbf{W} || \mathbf{W}_t) \}$$

sampling scheme?

Sample w_t so that $\mathbb{E}[w_t w_t^{\mathsf{T}}] = W_t$

Main course Algorithm Main results

Main result #1: upper bounds

Theorem $\operatorname{regret}_{T} \leq \frac{d \log T}{\eta} + \eta d \sum_{t=1}^{T} ||\boldsymbol{L}_{t}||_{F}^{2}$

For rank-1 losses:

$$\operatorname{regret}_T = \mathcal{O}(d\sqrt{T\log T})$$

In general:

$$\operatorname{regret}_T = \mathcal{O}(d^{3/2}\sqrt{T\log T})$$

Main result #2: lower bound

Theorem

There is a problem instance on which any algorithm will suffer $\operatorname{regret}_T = \Omega(d\sqrt{T/\log T})$

Dessert Fast implementation

Implementing the update

$$W_{t+1} = \arg\min_{\mathbf{W} \in \mathcal{S}} \{ \eta \langle \mathbf{W}, \hat{\mathbf{L}}_t \rangle + D(\mathbf{W} || \mathbf{W}_t) \}$$

Implementing the update

$$W_{t+1} = \arg\min_{W \in \mathcal{S}} \{ \eta \langle W, \hat{L}_t \rangle + D(W || W_t) \}$$

= by the classic decomposition

$$\widetilde{\boldsymbol{W}}_{t+1} = \arg\min_{\boldsymbol{W}} \{ \eta \langle \boldsymbol{W}, \hat{\boldsymbol{L}}_t \rangle + D(\boldsymbol{W} || \boldsymbol{W}_t) \}$$

$$\boldsymbol{W}_{t+1} = \arg\min_{\boldsymbol{W} \in \mathcal{S}} D(\boldsymbol{W} || \widetilde{\boldsymbol{W}}_{t+1})$$

Implementing the update

$$W_{t+1} = \arg\min_{W \in \mathcal{S}} \{ \eta \langle W, \hat{L}_t \rangle + D(W || W_t) \}$$

= by the classic decomposition

$$\widetilde{\boldsymbol{W}}_{t+1} = \left(\boldsymbol{W}_t^{-1} + \eta \widehat{\boldsymbol{L}}_t\right)^{-1}$$
 $\boldsymbol{W}_{t+1} = \text{renormalize}(\widetilde{\boldsymbol{W}}_{t+1})$

Implementing the update

$$W_{t+1} = \arg\min_{W \in \mathcal{S}} \{ \eta \langle W, \hat{L}_t \rangle + D(W || W_t) \}$$

= by the classic decomposition

$$\widetilde{\boldsymbol{W}}_{t+1} = \left(\boldsymbol{W}_{t}^{-1} + \eta \widehat{\boldsymbol{L}}_{t}\right)^{-1}$$

$$\boldsymbol{W}_{t+1} = \text{renormalize}(\widetilde{\boldsymbol{W}}_{t+1})$$

takes $\mathcal{O}(d^3)$ time in general

Implementing the update

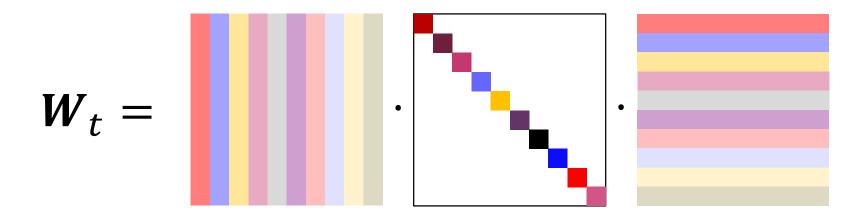
$$W_{t+1} = \arg\min_{W \in \mathcal{S}} \{ \eta \langle W, \hat{L}_t \rangle + D(W || W_t) \}$$

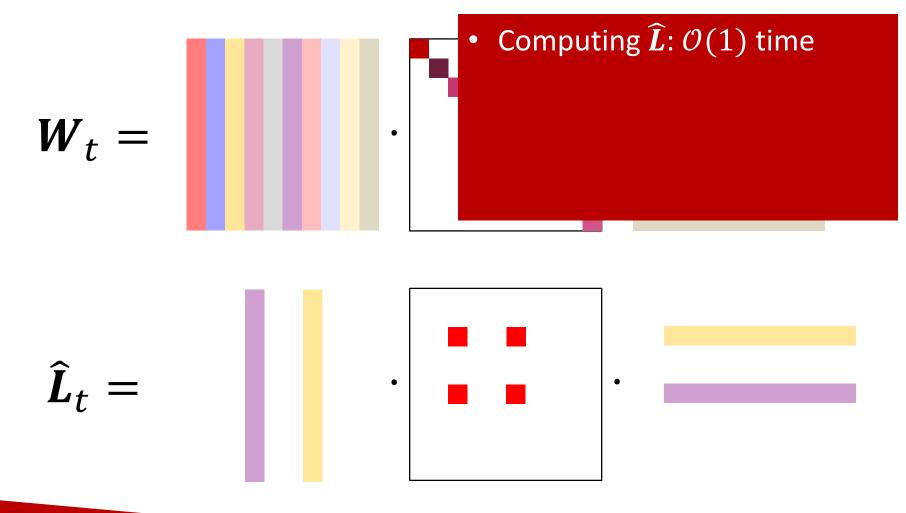
= by the classic decomposition

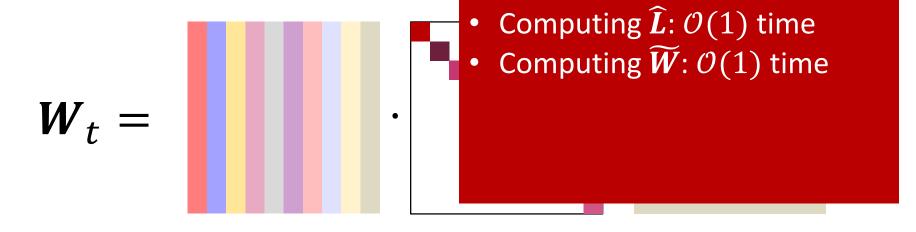
$$\widetilde{\boldsymbol{W}}_{t+1} = \left(\boldsymbol{W}_t^{-1} + \eta \widehat{\boldsymbol{L}}_t\right)^{-1}$$
 $\boldsymbol{W}_{t+1} = \text{renormalize}(\widetilde{\boldsymbol{W}}_{t+1})$

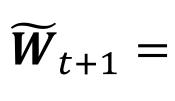
takes $\mathcal{O}(d^3)$ time in general

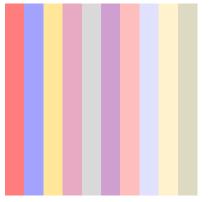
BUT ONLY O(d) TIME IN OUR CASE!!

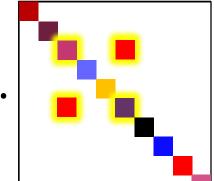


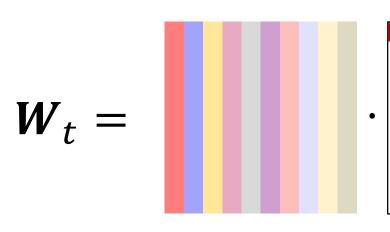




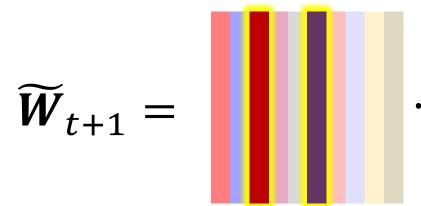


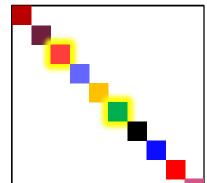


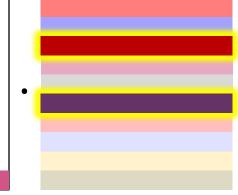




- Computing $\widehat{\boldsymbol{L}}$: $\mathcal{O}(1)$ time
- Computing \widetilde{W} : $\mathcal{O}(1)$ time
- Computing new eigenvectors: $\mathcal{O}(d)$ time





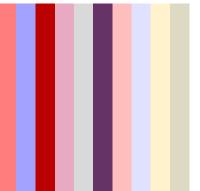


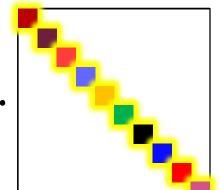
$$\boldsymbol{W}_t =$$

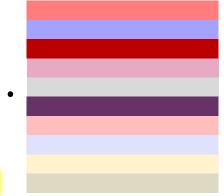
• Computing $\widehat{m{L}}$: $\mathcal{O}(1)$ time

- Computing $\widetilde{\textbf{\textit{W}}}$: $\mathcal{O}(1)$ time
- Computing new eigenvectors: $\mathcal{O}(d)$ time
- Renormalization: O(d) time

$$\widetilde{\boldsymbol{W}}_{t+1} =$$







Summary

	Previous best	Our work
Runtime	no polytime?	d
Upper bound	$d^2\sqrt{T}$	$d^{3/2}\sqrt{T}$
Lower bound	\sqrt{dT}	$d\sqrt{T}$

Summary

	Previous best	Our work
Runtime	no polytime?	d
Upper bound	Still a gap of \sqrt{d}	$d^{3/2}\sqrt{T}$
Lower bound	8888	$d\sqrt{T}$

d looks obvious, right?

d looks obvious, right?

- multi-armed bandits: d parameters to estimate $\Rightarrow \sqrt{dT}$ regret
- bandit PCA: d^2 parameters to estimate $\Rightarrow d\sqrt{T}$ regret?

d looks obvious, right?

- multi-armed bandits: d parameters to estimate $\Rightarrow \sqrt{dT}$ regret
- bandit PCA: d^2 parameters to estimate $\Rightarrow d\sqrt{T}$ regret?

NO:

Lemma:

For i.i.d. data, every non-adaptive algorithm will have error at least

$$\Omega\left(\frac{d^{3/2}}{\sqrt{T}}\right)$$

If true dependence is $\Theta(d)$:

First known case with a gap between non-adaptive and adaptive algorithms!!!

Lemma:

For i.i.d. data, every non-adaptive algorithm will have error at least

$$\Omega\left(\frac{d^{3/2}}{\sqrt{T}}\right)$$

Open problem: faster rates for phase retrieval

Our bound for PR:

$$O\left(\frac{d}{\sqrt{T}}\right)$$

SOTA for PR:

$$O\left(\frac{d}{T}\right)$$

Open problem: faster rates for phase retrieval

Our bound for PR:

$$O\left(\frac{d}{\sqrt{T}}\right)$$

SOTA for PR:

$$O\left(\frac{d}{T}\right)$$

Why such a big gap?

Open problem: faster rates for phase retrieval

Our bound for PR:

$$O\left(\frac{d}{\sqrt{T}}\right)$$

SOTA for PR:

$$O\left(\frac{d}{T}\right)$$

Why such a big gap?

- i.i.d. assumption
- spiked covariance model

Can we exploit these to obtain even better rates?

Thanks!