S. Grünewälder, “Compressed Empirical measures (in finite dimensions)”, ArXiv, 2023. [pdf]
Conference & Journal Publications
S. Grünewälder and A. Khaleghi, “Oblivious Data for Fairness with Kernels”, in Journal of Machine Learning Research, 2021. [pdf][GitHub]
S. Page and S. Grünewälder, “The Goldenshluger-Lepski Method for Constrained Least-Squares Estimators over RKHSs”, in Bernoulli, 2021.[pdf]
C. Pike-Burke and S. Grünewälder, “Recovering Bandits”, in Advances in Neural Information Processing Systems (NeurIPS), 2019. [pdf]
S. Page and S. Grünewälder, “Ivanov-Regularised Least-Squares Estimators over Large RKHSs and Their Interpolation Spaces”, in Journal of Machine Learning Research, 2019. [pdf]
S. Grünewälder and A. Khaleghi, “Approximations of the Restless Bandit Problem”, in Journal of Machine Learning Research, 2019. [pdf]
C. Pike-Burke, S. Agrawal, C. Szepesvári and S. Grünewälder, “Bandits with Delayed Anonymous Feedback”, International Conference on Machine Learning (ICML), 2018. [pdf]
S. Grünewälder, “Compact Convex Projections”, in Journal of Machine Learning Research, 2018. [pdf]
S. Grünewälder, “Plug-in Estimators for Conditional Expectations and Probabilities”, in Artificial Intelligence and Statistics (AISTATS), 2018. [pdf]
C. Pike-Burke and S. Grünewälder, “Optimistic Planning for the Stochastic Knapsack Problem,” in Artificial Intelligence and Statistics (AISTATS), 2017. [pdf]
F. Broekhuis, S. Grünewälder, J. McNutt, and D. W. Macdonald, “Optimal hunting conditions drive circalunar behavior of a diurnal canivore,” Behavioral Ecology, 2014.
S. Grünewälder, A. Gretton, and J. Shawe-Taylor, “Smooth operators,” in International Conference on Machine Learning (ICML), 2013. [pdf][supplementary]
W. Böhmer, S. Grünewälder, Y. Shen, M. Musial, and K. Obermayer, “Construction of approximation spaces for reinforcement learning,” in Journal of Machine Learning Research, 2013.
S. Grünewälder*, G. Lever*, L. Baldassarre, M. Pontil, and A. Gretton, “Modelling transition dynamics in mdps with rkhs embeddings,” in International Conference on Machine Learning (ICML), 2012. [pdf]
S. Grünewälder*, G. Lever*, A. Gretton, L. Baldassarre, S. Patterson, and M. Pontil, “Conditional mean embeddings as regressors,” in International Conference on Machine Learning (ICML), 2012. [pdf]
W. Böhmer, S. Grünewälder, H. Nickisch, and K. Obermayer, “Generating feature spaces for linear algorithms with regularized sparse kernel slow feature analysis,” Machine Learning (special issue for best ECML papers), 2012.
S. Grünewälder, F. Broekhuis, D. Macdonald, A. Wilson, J. McNutt, J. Shawe-Taylor, and S.Hailes, “Movement activity based classification of animal behaviour with an application to data from cheetah (Acinonyx jubatus),” In PLoS One, 2012. [PLOS One]
S. Grünewälder and K. Obermayer, “The optimal unbiased value estimator and its relation to LSTD, TD and MC,” in Machine Learning, 2011. [pdf]
W. Böhmer, S. Grünewälder, H. Nickisch, and K. Obermayer, “Regularized sparse kernel slow feature analysis,” in European Conference on Machine Learning (ECML), 2011.
S. Grünewälder, J.-Y. Audibert, M. Opper, and J. Shawe-Taylor, “Regret bounds for gaussian process bandit problems,” in Artificial Intelligence and Statistics (AISTATS), 2010. [pdf]
A. Onken, S. Grünewälder, M. Munk, and K. Obermayer, “Analyzing short-term noise dependencies of spike-counts in macaque prefrontal cortex using copulas and the flashlight transformation,” in PLoS Computational Biology, 2009.
A. Onken, S. Grünewälder, and K. Obermayer, “Correlation coefficients are insufficient for analyzing spike count dependencies,” in Advances in Neural Information Processing Systems (NeurIPS), 2009.
A. Onken, S. Grünewälder, M. Munk, and K. Obermayer, “Modeling short-term noisedependence of spike counts in macaque prefrontal cortex,” in Advances in Neural Information Processing Systems (NeurIPS), 2008.
S. Grünewälder, S. Hochreiter, and K. Obermayer, “Optimality of LSTD and its relation to MC,” in International Joint Conference on Neural Networks, 2007.
S. Grünewälder and K. Obermayer, “Attention driven memory,” in Annual Conference of the Cognitive Science Society, 2005. [pdf]